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ABSTRACT

There is currently a large research effort underway to develop new techniques 

and methods for the efficient development of software. However, much of this effort 

ignores the vast sum of knowledge that has been acquired through our experiences in 

the field of engineering CAD, especially in the area of VLSI design. Much of w hat has 

been learned in this area centers on database support for the design process, and in 

particular, efficient object-oriented modeling techniques for software design data. It is 

believed th a t the data model for software is a central issue surrounding the development 

of CASE systems.

Recognizing tha t great gains in software productivity will be realized only when 

software developed for one application is reused in subsequent applications, it is 

necessary to consider ways to support reuse through the data model used in these 

CASE environments. However, the reuse of software components is a complex problem 

involving methods of capturing, classifying, storing, and retrieving the program design. 

Unlike CAD, these issues are made additionally complex by the relatively abstract 

nature of the algorithms and ideas tha t make up software, as well as the rather specific 

textual representation of the end product.

Awareness of these reusability issues has led to the development of a new 

object-oriented semantic data model for use in CASE environments. The proposed 

semantic data model for software is based on the molecular object model used in CAD, 

but has been enhanced to capture and support more of the software development cycle. 

The model differs from the molecular object model in th a t where the molecular model 

defines an object as being composed of only an interface and an implementation, this 

model distinguishes between the interface used for defining an object and an interface 

tha t is used to call an object.

x iv
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The most important consequence of this enhancement is in supporting the reuse 

of software components. The comprehensive model structure incorporates a classification 

and retrieval mechanism designed to help map conceptual requirements to existing 

components in the software archive. This process is further accomplished by providing 

the designer with specialized operations on the model that assist him in matching an 

interface calling for service with an interface defined to provide th a t service.

xv
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1. INTRODUCTION AND HISTORICAL REVIEW

1.1 Software Reusability

The problem of reuse of existing software components is recognized as an issue 

of major importance [Weg84, ReA87], and is crucial to the economical development of 

large programs. However, software reusability is composed of a  number of im portant 

subproblems, including how to capture, classify, store, and retrieve the design data. The 

management of software components in a CASE database and the automatic support 

for software reuse is the subject of this thesis.

In software engineering environments the capture, or input, of program design 

data is often accomplished through the use of interactive graphical design editors that 

are based on data flow diagrams [Mye78], data structure diagrams [Jac75], structure 

diagrams [You75], or similar schemas. The CASE system  m ust extract the necessary 

design information from these tools and editors. A CASE system dedicated to reuse will 

store this design data according to various criteria, organizing the information in a 

m anner consistent with the reuse process.

An important part of the data storage process is a mechanism for classifying 

design data. Classifying software modules is necessary so that the database knows how 

to store and access the modules comprising the program design. Much work has been 

done towards the classification of software components [Pri87, Bur87], and this work is 

often based on a keyword-style schema. However, while the classification of software is 

not fully understood, a data storage model can make public certain features of the 

design so that the program designer can readily store and access program components. 

Any information related to the classification of these components m ust be included in 

the database as part of the data storage model.

The classified software components are catalogued in a software library and 

retrieved by means of indexing structures such as associative networks [Dep83], faceted

1
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2

schemas [Pri87], database joins over multilists [Wie87], or sequential catalogue listings 

such as in the IBM software catalogue. Again, the method used for storage of the 

program  design will dictate the efficiency and ease with which the library components 

are accessed.

The premise of this work is th a t a t the core of any CASE system there m ust 

exist a semantic model for design data tha t addresses these issues of reusability. A data 

model tha t meets this need and at the same time m atches the user’s conceptual view of 

the design would make any CASE system that is based on the model efficient and 

natural to use.

1.2 Software Engineering and CASE

Despite tremendous advances in the field of hardw are design and development, 

the basic nature of computer programming remains unchanged. It is largely an 

informal, person-centered activity which results in a detailed, formal product [Bal85]. 

This fact is both the cause and the effect of the fundamental problem of software 

engineering; managing the knowledge-intensive software development process.

To m eet this need, various program design methodologies have been proposed. 

These methodologies are m eant to guide the designer from the requirements of a 

problem to a well-structured and documented computer program that solves it. Several 

models, such as the waterfall model of the software lifecycle in Figure 1.1 [Phi88], have 

been presented to help m anage the large numbers of people and other resources 

involved in large software development projects. Automated tools have gradually been 

developed to assist programming team s and m anagers to access and deal with the 

influx of information. However, only recently is the utility and economics of combining 

these tools into a comprehensive and integrated workstation-type environment being 

realized.
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Figure 1.1. W aterfall Model of the Software Lifecycle

Software development workstations are part of what is known as 

Computer-Aided Software Engineering, or CASE. The aim of these environments is to 

reduce the administrative workload on the programmers and managers, provide tools 

for the efficient design and coding of programs, and act as a central library for the 

software that has been developed. Automatic knowledge-based assistants are often 

incorporated into the CASE environment as well as specialized tools for documentation 

and report generation. The end result is a programmer who is much more productive in
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term s of both the quantity and quality of the software produced.1

Progress in the field of CASE has been deliberate but slow. There has been a 

call for more integrated systems tha t combine the tools available a t various stages of 

the design process. However, a limiting factor with such systems centers on the efficient 

manipulation of large quantities of design data  as required by large software projects. 

This problem is exacerbated by tools th a t require th a t design data be stored in a format 

specifically adapted to tha t tool. However serious this may appear, it is not unlike the 

problems faced by developers of CAD/CAM systems years ago. This realization leads us 

to conclude th a t there may be a t least a partial solution to these software development 

problems to be found in engineering design systems.

1.3 Applying CAD Database Concepts to CASE

Engineering CAD applications and designers have at their disposal a host of 

tools to assist in the development of their products. The experience tha t these designers 

have with CAD/CAM system s has demonstrated th a t good application tools contribute 

greatly to the design process. With this in mind, recent work has been to develop 

similar tools for software engineering. Early efforts in this area indicate th a t many of 

the same advantages tha t were realized by the users of engineering CAD systems can 

be found using a CASE system for the development of software. However, since the 

software design process is less well understood than tha t of other engineering 

disciplines, much work remains to be done.

One thing th a t has been explored is the benefits to using an underlying database 

to organize the large quantities of data typically managed by a CAD environment. 

However, many CAD tools have employed conventional database system s in this role, 

only to discover th a t the relational data model on which they are based cannot

1 An excellent review of current CASE technology is found in [Dig88].
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gracefully represent engineering design data [Sid80]. It is necessary to view this data 

as a set of design objects, and new models for design data based on this object-oriented 

concept are being developed [Hel87].

In taking an object-oriented approach to model design data, it is necessary to 

develop and utilize specialized databases for m anagement of these objects. If these 

design tools supported by object-oriented database systems are to be effective, they have 

to represent application data in a form that matches the user’s conceptual view of the 

data. This requires that these tools be built around a semantic data  model that is 

appropriate for the application. Therefore, a t  the core of these tools is a data model that 

mirrors the design of the final product and assists in the process of design. This is 

especially important in a CASE environment, where the abstract concepts related to 

software development are much more difficult to quantify than in a traditional 

CAD/CAM system.

1.4 Data Modeling in CAD and CASE

One data modeling method for CAD/CAM applications th a t is currently getting 

widespread attention is the molecular object model [Bat84, Buc85]. This model takes an 

object-oriented programming approach to design objects; each object has an interface 

tha t defines the object for the outside world, and each object has an implementation that 

specifies how the object is actually composed, or defined. The details of the 

implementation are hidden from the outside world. The molecular model is partially 

adaptable to CASE, but while it appeals to object-oriented design advocates, it is lacking 

properties needed in a dynamic design environment dedicated to reuse.

W hat the Batory model lacks is flexibility enough for an incremental, 

interactive, and evolutionary approach to design. This is because the molecular model 

uses the interface in two ways, both to define objects and to "call" them. This dual role 

makes the allowable operations on the interface overly restrictive. Furthermore, while
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the reuse of existing components is recognized as an  issue of major importance, there is 

no evidence of supporting reuse from the data modeling perspective. This is because the 

Batory model hides implementation information from the designer even in cases when it 

might affect the choice of available components. By distinguishing between interfaces 

used to define objects and interfaces used to call for services, the data model proposed in 

this thesis eliminates this problem.

An additional important function that the data  model m ust perform in addition 

to modeling design data is to provide efficient support for design queries and 

modifications, system documentation, and any software engineering tools th a t need to 

access the data. This is especially true when the design becomes large, as is the case 

with large-scale applications programs such as operating systems. In this new data 

model, the design of large scale systems is efficiently managed through a cooperative 

effort between the data model and the strategies for classifying, storing, and retrieving 

the data. Efficient access of the design data for operations and queries are managed 

through the use of forward and backward reference pointers in the design objects that 

allow the control flow, scope issues, and data dependencies to be modeled and stored in 

a straightforward manner.

The data model in this thesis, termed the In te rac tiv e  D evelopm ent M odel, or 

IDM, is composed of three parts. The first of the parts is the interface, which defines a 

software module. It consists of the common attributes of the alternative 

implementations for the interface that are visible to the outside world. These attributes 

not only help define the interface, but are also used to support reuse by serving to 

locate appropriate interfaces in the software library for a given requirement.

The second part of the IDM is the alternative. The alternative is the 

implementation of an interface, and defines a strategy for accomplishing the function 

stated in the interface. An interface may have any number of alternative
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implementations; these are typically distinguished by a fundamental difference in 

algorithm, language, etc.

The final part of the IDM is the call. The call is a request for service, and 

consists of an abstract specification of a software requirement. Unlike the interface and 

the alternative objects, the call does not define software modules; rather, it serves to 

bridge the gap between the need for a function and components that are able to meet 

th a t need. Specifically, the call object and its associated operations are used to develop 

the abstract specification into a well-defined requirement th a t can be satisfied by a 

particular interface and alternative. The call also serves to record the specification for 

documentation of the design and for use during program updates and maintenance. The 

call, therefore, is a flexible and powerful tool for the designer.

In order to validate the theory and ideas th a t have been incorporated into this 

data model for software design, a prototype software engineering environment based on 

this model has been developed. This prototype dem onstrates how the data model, 

working together with a library of design objects representing reusable software 

components, tackles the major issues of software reusability in a functional system.

1.5 Contributions

The major contribution of this research is the introduction of a new method for 

modeling design data in a software engineering environment. This new data model, the 

IDM, is unique in tha t it was developed primarily in response to an effective means for 

supporting software reusability in these environments. The model is innovative in that 

each of the major reusability issues of data capture, classification, storage, and retrieval 

are inherently addressed by the model.

The issue of data capture is addressed through the creation of a new graphical 

design tool and methodology for use with the IDM. Data classification and retrieval are 

studied in detail, with several techniques developed and proven to be compatible with



www.manaraa.com

8

the IDM and a CASE system that is based on a philosophy of software reuse. Finally, 

data storage in both the long term archival aspect and the more immediate design 

database aspect are covered. An IDM-based organization for a software reuse library is 

presented and shown to fully support distributed CASE systems. Of course, the 

semantic structure of the design database is the focus of this thesis.

An additional and important contribution made by the IDM is clarifying the role 

that the interface plays in object-oriented programming methodology. This model 

stresses the fact tha t the implementation portion of a design object contains information 

critical to determining an appropriate use for the object. The model further makes this 

information available to the designer through the call portion of the design object.

While most semantic data models for CAD only support information related to 

the final product, in addition to this capability the IDM provides a facility for the 

development of requirement specifications through the use of call objects. This feature 

allows the model to be used very early in the design process. Since the call object allows 

modification of these requirements, it also supports system upgrades and maintenance 

of the program. Furthermore, the model’s representation of the completed design is in a 

language-independent pseudocode that is useful in numerous applications.

In summary, the reusability issues of software design capture, component 

classification and retrieval, and information storage are integral parts of a CASE 

system that is dedicated to increased software productivity through reuse. The three 

part IDM makes a significant contribution to the field of design data  modeling for CASE 

by addressing each of these issues in a coherent framework.

1.6 Outline of the Thesis

This thesis concentrates on data modeling requirements for supporting software 

reusability in a CASE environment. The major issues surrounding the reuse of software 

components are addressed, and a viable solution is proposed. Chapter 2 of the thesis
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starts  with a detailed review of traditional data models used in commercial database 

systems. It follows with a synopsis of the advantages of applying database technology 

to engineering design environments, and then provides a detailed discussion of current 

CAD modeling techniques. The chapter concludes with an analysis of those elements 

th a t are necessary for successfull data modeling in a CASE system  for reusability.

Chapter 3 introduces the Interactive Development Model for CASE systems.

This chapter then gives a detailed view of the data model, including an overview of the 

operations tha t are valid on the model and how the operations are used during the 

design process. The chapter concludes with some comments on how this model affects 

the object-oriented design methodology.

Chapter 4 is the first of several chapters devoted to the major issues 

surrounding software reusability. This chapter concentrates on capturing software 

design information in a CASE system, and reviews the major software engineering 

methodologies in use today. The chapter concludes by introducing a new method for 

design capture th a t meets the conceptual requirements of the software designer and also 

corresponds closely to the constructs of the IDM.

Chapter 5 discusses the issue of classifying software components. Several 

techniques are discussed, and, finally, a method based on keywords is detailed for use 

with the IDM. Chapter 6 takes a look a t methods of retrieving software components 

once they have been stored in the database system. Finally, Chapter 7 addresses the 

physical organization of software archives and secondary storage considerations. The 

primary problem of these software reusability issues is how to match an abstract 

requirement with a component in the archive th a t may be able to meet the requirement. 

Many classification, storage, indexing, and retrieval strategies are discussed, with 

emphasis on selecting an appropriate approach for use with the IDM and determining 

the ability of the IDM to function with such techniques.
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Chapter 8 gives an overview of an experimental implementation of the IDM in a 

prototype CASE system. The CASE system is explained, and a sample design session 

featuring the reusability tools built into the model is given.

Chapter 9 is a discussion and evaluation of how the IDM addresses the problem 

of software reusability in a CASE environment. Each of the issues of data capture, 

classification, storage, and retrieval is reviewed, and a conclusion is offered based on the 

IDM and the issues and topics involved in semantic data modeling for software 

engineering.

A thorough literature search is provided in Chapter 10, and is documented by 

the references a t the end of the thesis. Chapter 11 presents the value of this research 

in terms of contributions to the fields of software engineering and CAD/CAM. This 

chapter also analyzes how the new IDM meets the data modeling and software reuse 

requirements introduced in Chapter 2. Chapter 12 is on future work, and looks at some 

areas th a t will require more research before a  complete understanding of data 

managem ent in software engineering environments is achieved. Finally, the thesis 

concludes with a discussion and conclusion based on the findings of this research.

The appendices that follow the thesis body detail some of the important aspects 

of the IDM as well as some related topics. Appendix I is a sum m ary of the data 

structure used for the CASE prototype. Appendix II is a detailed description of the 

operations valid on the model and the semantic constraints on those operations. 

Appendix III discusses some findings on the related topic of user interface issues in 

CASE systems, and Appendix IV expands on Chapter 4 by summarizing a substantial 

body of work done in the preliminary phases of this research regarding the automatic 

conversion of design diagrams to other forms of design diagrams.
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2. HISTORICAL REVIEW OF SEMANTIC DATA MODELING IN CAD

2.1 Introduction

Once the software design process begins, design data that has been entered into 

the CASE system must be organized and stored. Since large engineering problems 

typically involve enormous quantities of data, a major issue is the efficient managm ent 

of this information. This problem was first faced by developers of CAD/CAM system s, 

and now is being introduced into today’s CASE applications. Furthermore, while 

databases are readily accepted as the tool to meet the data management need, there 

further exists the problem of semantically representing the information in a form that 

both the program designer and the database system could easily understand.

Before we can explore how some of these advancements can be used in CASE 

systems, it is necessary to understand the issues and how they were handled by the 

CAD/CAM designers. The following chapter provides a foundation for the topic of 

database issues to CAD/CAM. It is a general discussion of concepts native to database 

technology, and is oriented at the problem with which we are most concerned: semantic 

modeling of engineering design data. First, the rational for using databases for the 

management of CAD/CAM data is given. Second, the concept and purpose of a  data 

model is explained, followed by a review of traditional data modeling techniques. The 

shortcomings of the traditional techniques are discussed and finally, current techniques 

used for engineering design applications are presented. The purpose of this chapter is to 

provide the historical and technical background for the introduction of the IDM for 

software design.

2.2 The Argument for Database Support of CAD and CASE

As engineering CAD and CASE systems have developed, a t some point all have 

had to address the problem of managing large quantities of design and administrative

11
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data. As the design and size of the project grows, so does the average response time for 

basic operations. This dictates the need for efficient access to the design data for the 

purpose of updates as well as for the generation of reports and other documentation.

Years ago, the developers of CAD systems realized the advantages of 

capitalizing on readily available database technology to support this need, and applied 

this technology in their application systems. Database features that were found 

particularly useful were indexing of data files, standard query language capabilities, and 

controls on access to data for concurrency and security reasons. Over the years, much 

research has gone into applying this database technology to CAD/CAM applications.

2.3 Traditional Data Models

2.3.1 Introduction

The objective of a  data  model is to represent, as accurately as possible, the 

fundamental real-world concepts th a t an organization or application uses. Therefore, a 

data  model is essentially a formalism that expresses the logical structure of data. This 

formalism helps the database designer organize the problem space and then map his 

problem to an appropriate representation in the computer.

One of the first and most fundamental concepts used in traditional data 

modeling is that of the entity. An entity is usually an object in the real world about 

which information is to stored, such as a person, place, or thing. An entity has an 

associated collection of values, or attributes th a t describe the properties of the entity. 

Attributes of a person, for example, may include the person’s name, address, and 

telephone number.

The data model m ust also capture how the various entities in the world interact. 

For this, the concept of the relationship is used. Typical relationships involving people 

are married to and is boss of. By defining the entities in a system and the
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relationships between these entities, the database designer is usually well on his way to 

understanding the nature of his problem.

In order to complete his understanding of these entities and how they interact, 

the database designer outlines the system using a database diagram. This diagram, or 

schema, is a structural representation of the information. Traditionally, there are three 

different schemas used for database diagrams. These are the relational model, the 

hierarchical model, and the network model. Each of these models has relative merits and 

weaknesses, and is discussed in more detail below [Dat85a, Dat85b, Tsi82, U1182].

The example used to illustrate the three data models in the following sections is 

based on a familiar university database application. In the university example, students 

enroll for courses and receive grades for the courses taken. The entities in the example 

are STUDENTS and COURSES. STUDENTS has the attributes of student number 

(SNO), student name (SNAME), and student major (SMAJOR). COURSES has the 

attributes of course code (CCODE), course name (CNAME), and course credit hours 

(CHRS). The relationship between the entities STUDENT and COURSES is the 

GRADES relationship. Since a student may take many courses, and a  course is taken 

by many students, there is a many-to-many, or N-to-N, correspondence between 

STUDENTS and COURSES. This relationship is shown in the entity-relationship 

diagram of Figure 2.1. In the STUDENTS-COURSES relationship, each student has one 

letter grade (LGRADE) for each course. This example, as well as the associated 

diagrams, are derived from [Pot88].

2.3.2 The Relational Model

From the user viewpoint, the relational model is composed of a  set of tables 

called relations. There is typically one relation for each entity and one relation for each 

relationship in the model. There is one column in the entity relation for each attribute of 

the entity. In the table for a relationship, there are columns to uniquely identify the
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GRADES

CCOOE CNARE CHRSL6RA0ESHARE SHAJORSNO

COURSESSTUDEHTS

Figure 2.1. An Entity-Relationship Diagram of the University Database Example

STUDENTS

SNO SNARE SRAJOR

S I Ron Comoutar  Selanea
S 2 S u o n a th a m a t ic a
S 3 Kim C o m o u ta r S e ta n e a
S 4 Bob E la c tr ie a l  E n g in aa rin g

COURSES

CCOOE CNARE CHRS

CS 101 F o r tra n 3
M 2 4 0 C alcu lu a 4
CS 2 1 0 O ota  S t r u c tu r a 3
EE 2 2 0 C om outar A rc h lta c tu ra 3

GRAOES

SNO CCOOE LGRAOE

S I C S IO I A
S I M 2 4 0 B
^ 2 CS 2 1 0 B
S2 M 2 4 0 c
S2 EE 2 2 0 A
S3 CS 2 1 0 C

Figure 2.2. University Example using the Relational Model

entities involved in the relationship and additional columns to identify the attributes of 

the relationship. Information is stored in the rows of the tables; each row is referred to
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as a tuple. In the university example, each student is uniquely identified by his student 

number (SNO) and each course is uniquely identified by its course code number 

(CCODE). These columns provide a key for the STUDENTS relation and for the 

COURSES relation. Taken as a pair (SNO, CCODE), they form a key for the GRADES 

relation. A relational schema for the university database is shown in Figure 2.2.

Most commercial databases organize their internal data structures in a 

relational fashion. In this sense, the relational database has become the standard for 

supporting traditional applications. This is because the relational model and the data 

manipulation language used to query the relational database are relatively easy to 

understand, implement, and use. It is im portant to note tha t when the next two 

schemas are used in the design of database, they are often later mapped to a relational 

schema in order to be implemented on a  relational database system. This is not because 

there do not exist very efficient hierarchical and network database systems, but is 

because of the proliferation and popularity of the relational model.

2.3.3 The Hierarchical Model

The hierarchical data model is based on the belief that much of the real world 

can be viewed as being organized in a hierarchical structure. A good example of a 

hierarchical structure is the ordering of management positions in a large corporation. 

Such a ranking of positions is usually depicted in a tree diagram, which quickly conveys 

the relative positions of the members of tree.

The hierarchical model makes extensive use of the parent-child relationship 

inherent in the model. This relationship is depicted by an arch in the hierarchical 

diagram. As shown in Figure 2.3, higher-level parent nodes in the tree are connected by 

arcs to lower-level child nodes. In this example, each course has two child relations. One 

is a relation tha t lists all the grades indexed by the student numbers of the students 

who received them. The other relation is a  list of all the students who took the course.
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Figure 2.3. University Example using the Hierarchical Model
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Figure 2.4. University Example using the Network Model

One shortcoming of the hierarchical model is that there is no direct way to 

represent many-to-many relationships in the diagram. This is because in a tree 

diagram, no child may have more than one parent. This would create difficulty, for 

example, in depicting the management structure of a company th a t used the matrix 

organization, where an employee may report to one or several m anagers. In an 

engineering application this would create difficulty if a subpart was used to construct 

several assemblies.
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2.3.4 The Network Model

In the network model, entities are described by a record type definition, which 

simply defines the name and the attributes of the entity. Relationships are described by 

a set type definition. A set type is composed of an owner record type and a member 

record type. Many-to-many relationships may be formed by allowing the sets to overlap.

As shown in Figure 2.4, the letter grade of the university example is owned by 

the STUDENTS-GRADES and the COURSES-GRADES sets. By navigating through the 

network via a data manipulation language, the LGRADE for a student (SNO) in a given 

course (CCODE) is uniquely identified.

The prim ary advantage of the network model is the close correspondence 

between the conceptual model and the physical implementation of the model. This 

correspondence makes the system particularly efficient. However, it also makes the 

model confusing from a user’s viewpoint because he must have a working knowledge 

about the underlying network schema in order to navigate through the data.

2.4 Database Technology in CAD/CAM Applications

2.4.1 Shortcomings of Traditional Databases for Engineering Design Data

Although many VLSI CAD system s exist and have been supported by relational 

databases, it is now well recognized th a t the standard relational database is inadequate 

for modeling and storing design data [Bat84, Has82, Hel87, Sid80]. The reason centers 

around the nature of the basic entity in an engineering design, the object.

The object in an engineering design is either recursive or non-recursive and 

disjoint or non-disjoint [Bat84, Buch85]. Recursive objects are those that may have 

sub-parts of the same type. As shown in Figure 2.5, an assembly is a recursive object 

because it may be composed of other assemblies [Hard87c]. In the diagram an IBIT is 

used to represent an instance of an object, and an RBIT is used to represent the
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ASSEMBLY
*

RBITIBIT

P A R T

Figure 2.5. A Recursive Design Object

l l s t - a  Molecule

U s t- b  Molecule

Figure 2.6. A Non-Disjoint Design Object

recursive part of the object; the AND/OR tree notation is explained in a  following 

section. A disjoint object is one tha t shares no sub-part with another object. An example 

of a non-disjoint object is shown in Figure 2.6 [Bat84]. Representing design objects with 

this recursive/non-recursive, disjoint/non-disjoint structure in a  relational database is 

extremely tedious and inefficient.

In addition to the difference between conventional business information and 

engineering design data, there is the difference in the interactions that take place 

between the designer and the computer, as well as the nature of the design process 

itself. One example is the duration of a design transaction. Where a  conventional 

business database might access a record almost instantaneously, the engineer might 

spend hours, days, or even months to work on a design object. Additionally, the
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designer quite often builds one object from a copy of another, with a desire to maintain 

access to all versions th a t have been created. The designer might also desire the ability 

to view different aspects of the design based on his decisions. Therefore, the design 

database m ust not only support evolution of design objects from existing objects, but 

maintain control over multiple versions of these objects, support multiple views of the 

data in a design, and rem ain consistent over extended, or conversational transactions. 

Conventional relational database system s do none of these things easily.

In view of all these differences, and the realization th a t relational databases 

were not designed to m eet the needs of CAD/CAM applications, a new approach had to 

be found. W hat was required was a semantic model for design data  th a t maps easily to 

the user’s m ental model of the design data  and engineering process. This ease of 

mapping means you can have a system th a t is easy to learn and use because the user 

can work under the illusion that the computer actually understands the objects and 

operations th a t he is thinking about [Hei87].

2.5 Engineering Data Models

2.5.1 Complex Objects

To meet the need for a powerful and straightforward representation of design 

objects, complex objects and object-oriented database systems were developed [Lor83, 

Plo84, Kim87]. Complex objects are hierarchical groups of tuples consisting of a root 

tuple that represents a data object, and a set of dependent tuples tha t define the object. 

Figure 2.7 is an example of 2-phase shift register and its complex object representation 

[Kat85]. Note th a t the 2 Half-shift registers tha t compose the shift register circuit are 

merely referenced in the implementation definition (composition) of the shift register and 

are defined elsewhere. This series of pointers from parent circuit to child circuit are the 

foundation of complex objects. As can be seen in the figure, complex objects can
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Figure 2.7. Complex Object Description of a Shift Register

succinctly represent the recursive, nondisjoint objects that the relational model cannot 

easily handle [Bat84, Buc85],

The prim ary advantage of complex objects is tha t they offer flexibility for 

implementation in that tuples may be clustered into relations or into objects. However, 

for complicated multi-level data structures the structure of the object is difficult to see. 

Also, the model contains very little semantic information. Although this makes the 

model extremely flexible, it also makes operations loosely typed and the entire data 

structure too open for interpretation.
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The Interface The Implementation

Figure 2.8. A Molecular View of a 4-input AND gate

2.5.2 Molecular Objects

An example of a semantic data model for VLSI design data that is based on 

complex objects is the molecular object model. In this model, circuit objects are defined 

to have two distinct parts, an interface and an implementation [Bat85, Kat85]. As 

shown in Figure 2.8 [Pou89], the interface of an object consists of connections to the 

outside world, and defines how other objects can use or access the design object. It 

contains the common attributes of the existing implementations for that object. The 

implementation of the object defines how the object does its job, and in VLSI is typically 

made up of instances of subcircuits and the wires that interconnect them.

In the VLSI molecular model, a designer may refer to a subcircuit without 

specifying an implementation for that subcircuit. In this case, the designer references 

only the interface for the object. If the designer does not bind an implementation to this 

interface, the interface is referred to as a socket in the design of the higher level circuit. 

This socket must then be plugged with an implementation for th a t interface before the 

design can be considered complete. The plug becomes an instance of the subcircuit in the 

design.
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Circuit

NAME DESIGNER DATE SIMULATION LAYOUT

adder john 2/2/82 range s Simulation 
retrieve (s.all) 
where s.PID* 00001

range y Layout 
retrieve (y.atl) 
where v.PID* 00001

I/O  bus mike 3/3/83 range s Simulation 
retrieve (s.all) 
where s.PID* 00002

range y Layout 
retrieve ( y.all) 
where v.PID - 00002

ALU paul 4 /4 /84 range s Simulation 
retrieve (s.all) 
where s.PID* 00003

range y Layout 
retrieve (y.all) 
where v.PID* 00003

Figure 2.9. A Circuit Described with QUEL as a D ata Type

2.5.3 Hybrid Models

Hybrid data models are models th a t extend the relational model so th a t an item 

in a tuple can contain an unusual type of data  [Har85a, Tsi82], An example of such a 

data  type would be pointers to other relations, as is done in the Relational/Network 

Model [Hay81]. The relations that are pointed to would contain further information 

describing the object. However, unless rules restricting the typing of these pointers are 

made a part of the implementation of this model, it suffers from the same lack of 

semantics as does the basic complex object model. Another form of hybrid model is the 

QUEL as a D ata Type model [Sto84], in which actual queries in the data manipulation 

language QUEL are stored in the fields of a tuple. A conceptual example of this method 

is shown in Figure 2.9 [Har85b]. These queries are evaluated when the field of the 

tuple is referenced. However, since the results of this query are dynamic in the sense 

tha t they are not evaluated until they are accessed, the actual composition of an object 

is difficult to capture.
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DECLARE Student () —. ENTITY 
DECLARE Nam* (Student) — STRING 
DECLARE Dept (Student) Department 
DECLARE Coune (S tuden t)C ourse
DECLARE Coune () —> ENTITY 
DECLARE Title (Coune) — STRING 
DECLARE Dept (Coune) •  Deportment 
DECLARE Instructor (Coune) Instructor
DECLARE Instructor ()  —> ENTITY 
DECLARE Name (Instructor) — STRING 
DECLARE Rank (Instructor) ■» STRING 
DECLARE Dept (Instructor) •» Department 
DECLARE Salary (Instructor) *» INTEGER
DECLARE Department ()  —  ENTITY 
DECLARE Name (Department) — STRING 
DECLARE Head (Department)«  Instructor

Figure 2.10. A Functional Database Example

2.5.4 The Functional Model

A functional data model is a binary modeling approach to problem space [Shi81]. 

The designer views the object in a somewhat mathematical sense, defining, modifying, 

and accessing the data through a series of functions. An example of a database 

definition using this method is shown in Figure 2.10 [Spo86]. Once a  data value is 

loaded into the database, it is retrieved by a query using the same functions. For 

example, executing Department'John Sm ith’) might return 'Computer Science.’ The 

major disadvantage of the functional model in CAD/CAM applications is that there is no 

way to group related data into objects. This problem is compounded by the fact th a t this 

model makes no distinctions between functions that link objects to their attributes and 

functions that link objects to other objects.

2.5.5 Object in a Field

Object in a field approaches store all of the information describing an object in a 

field of a tuple. This tuple can be conceptually viewed as a tuple in a  relational table or 

a tuple in a complex object. As a modeling technique, this approach is considered less
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flexible than the other techniques because it incorporates a much stronger data typing 

mechanism. Fortunately, this is an advantage in software engineering environments, 

where strong data typing is considered desirable. In addition, objects in a field are 

particularly adept a t controlling the visible complexity of a database when objects have 

a complicated multi-level structure. One particular object in a field approach that will be 

discussed in the approach used by the ROSE engineering database system.

2.5.6 Overview of ROSE

ROSE is an experimental database system that provides graphics and user 

interface tools for CAD applications [Har85a], ROSE is fast, m anages data clusters as 

objects, and provides access to the database through a combination of powerful control 

structures based on the ’C’ programming language and database commands that are an 

extension of the relational algebra [Har87a].

ROSE stands for Relational Object System for Engineering. As the name 

implies, ROSE combines some of the features of a relational database system with those 

of an object-based system. As discussed above, while relational system s are efficient and 

easy to use, these system s do not represent objects well. The solution adopted by ROSE 

is to use a relational database not to store objects, but instead, to store information 

about objects. In effect, ROSE uses a relational database as an index into an object 

database. This has the advantage of employing the most effective organization for each 

application; design operations are efficient because design data  is clustered into objects, 

and global operations such as searches are efficient because of the index provided by the 

relational database [Har87b].

An additional reason for the speed and usefulness of ROSE in real-time 

applications is tha t ROSE caches all of the information about a design session into main 

memory, where it can usually be found in a single search. The ROSE system divides 

main memory workspace into three areas. The first area is for the application program,
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the second area stores object data while the objects are in main memory, and the third 

area is a scratchpad area used to store the results of computations.

Application programs for ROSE are written in a data manipulation language 

tha t is similar to the programming language ’C.’ Constructs such as procedures, 

functions, while loops, and if-then-else statements are provided. Object data is accessed 

and modified through an extended relational algebra [Har87c]. Because of this, the 

language is set oriented and strongly typed. The language is extended in the sense that 

it provides special operators for accessing the recursive data found in engineering 

applications [Har87c].

One strong argum ent in favor of using a  system such as ROSE for a CASE 

prototype is th a t ROSE features a very open architecture. Object data  is saved 

permanently in standard operating system files and directories where it can be viewed 

and checked. Also, since ROSE is an interpretive system, new functions can be added 

and the object base can be accessed without having to continuously recompile application 

code.

Finally, data structures in ROSE are defined in an expressive AND/OR tree 

format [McL83]. An AND/OR tree is a notation for representing the data  abstractions 

that commonly occur in design applications. Each node in an AND/OR tree defines a 

domain for an object or one of its sub-objects; in other words, w hat makes up that 

object. Figure 2.11 [Har87b] contains examples of these abstraction types. In the figure, 

the AND nodes represent aggregation abstractions, in which a point is composed of both 

an X-coordinate and a Y-coordinate. The OR nodes represent generalization abstractions 

[Smi77], which says th a t a number is either of type INTEGER or of type FLOAT. An 

asterisk under either type of node represents an association abstraction. In the figure, a

polygon is composed of any number of X,Y coordinate pairs, and a number collection is

composed of a list of numbers, each one of which is either of type INTEGER or of type
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point ' number

X Y INTEGER FLOAT
rod real integer real

Aggregation Generalization

polygon number.collection

X
real

Y INTEGER FLOAT
real integer real

Aggregation with Generalization with 
Association Association

Figure 2.11. The Four Types of AND/OR Trees

FLOAT [Bro84].

2.6 D ata  Model Requirem ents for Support of CASE an d  Softw are R euse

2.6.1 Form al Definitions

A data model is a generic concept that defines the rules according to which data 

is structured. This structure, however, does not provide a  complete interpretation about 

the meaning of data and the way it will be used; operations which are permitted on the 

data also have to be specified. Finally, disallowed objects or relationships are excluded 

by defining restrictions, called constraints, on the data structures and the valid 

operations [Tsi82].

Formally, a generic data model GDM consists of three parts: a set of data 

structures S ,2 a set of operations 0  on those data structures, and a  set of semantic 

constraints C. A generic data model can then be viewed as the three-tuple GDM = (S,

3Or, alternately, a set of generating rules G for the creation of data structures.
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O, C). In order to be classified as a database model, each of the elements in this tuple 

m ust be addressed.

In addition to these components of a generic data model, a CAD data model 

CDM also includes a number of other criteria. Formally, a CDM is the six-tuple CDM 

= (GDM, C data, Cproc, Objcad, A, V), where:

•  Cdata is the conceptual view of data, which in CAD is the molecular formula Cdata 

= I n x lm , for Interface and Implementation, respectively.

•  Cproc*s t îe concePtual view of design, which in CAD is a top-down, structured

process. Therefore, the structure S of each CAD object is viewed as a composition

of sub-object structures, or C proc = S e S’ x S” , where S’ and S” are complete 

and independent sub-objects contained in and comprising S.

•  Objcad *s the capacity to represent CAD objects, or, O b j ^  = Sd + Snd + Sr + 

Snr, where the subscripts are disjoint, non-disjoint, recursive, and non-recursive, 

respectively.

•  A is multiple alternatives, or A = S e SxS .

•  V is multiple versions, or V = S x T ,  where T is time.

A data model for use in a CASE system, CCDM, m ust be a  CAD data model, 

but m ust also include attributes unique to CASE environments. Therefore, a CAD data 

model CDM e CCDM. Formally, CCDM = (CDM, L, DT), where:

•  L is the set of structures containing the process data for the software lifecycle. 

Formally, L = D ^ x D ^ x D ^ x  . . .  x D ^ x D ^ ,  where each Dx is the 

process data D for a phase of the software lifecycle, from the feasability study 

through maintenance.

•  DT is the representation of data types internal to the program design,

DT e Objca<J.
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The preceeding discussion has also outlined a number of criteria th a t are unique 

requirements for a data model in a CASE system supporting software reusability. 

Therefore, a data model for reusability in a CASE environment RDM can be viewed as 

the five-tuple RDM = (CCDM, G, Dclags, R, PL), where:

•  G is the invertable mapping from design tools to objects G: DT -» S, where DT is 

a design tool.

•  Dc[ass is classification data. Furthermore, for every design object S there exists a 

semantically well-defined mapping CLASS: S ■+ Dclass-

•  R is the retrievability mapping R: D ^  -+ S.

•  PL is the property of programming-in-the-large. PL addresses concerns that arise 

when lim {S} for any software design consisting of a set of n structures S. For
n-*°°

large n, critical issues range from archival storage of design information to 

efficiency of database operations and implementation.

In light of this definition of a RDM, fifteen points are identified and presented in 

order to establish a basis for the evaluation of a data model. While the contents of this 

list is debatable, it is representative of those qualities that this research has determined 

to be highly desirable in CASE applications. The CASE/Reusability requirements below 

are further presented in term s of their relationship to the five issues of reusability that 

were introduced earlier. These are the issues of semantic modeling, design capture, data 

classification, object retrieval, and long-term data storage. The fifteen requirements will 

heavily influence the design of the IDM later in Chapter 3.

2.6.2 For Sem antic M odeling of CAD D ata

1. Model must mirror the designer’s conceptual view of data.
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Since the goal of a reusability-based CASE system  is to increase software 

productivity by reducing the need to duplicate development efforts, the model m ust 

incorporate the concepts of reusable and interchangeable parts. Recent work in 

CAD has shown that this feature is supported by conceptually separating design 

objects into interfaces and implementations in the data model. This separation 

allows the designer a black-box and a white-box view of the object, and allows him 

to manipulate a design object without having to consider the details of 

implementation. In addition, through these interfaces and implementations the 

model m ust represent software concepts such as control flow, a  major consideration 

in the design of software systems.

2. Model must mirror the designer’s conceptual view o f the design process.

In CASE, as in CAD, design is an incremental process consisting of an 

initial design, followed by m any product versions brought on by changing 

requirements. It is also a structured process, consisting of recursively reducing 

problems of large size into several self-contained subproblems of more manageable 

size. This reduction can consist of a  mixture of bottom up and top down techniques. 

The CASE system and the data  model must provide the capacity to design in 

either of these methods.

3. Model must efficiently represent the object structures found in CAD.

For efficiency of operation, practical implementation, and conceptual 

elegance, the data model m ust be able to represent the types of design objects 

found in design systems. This includes the recursive, non-recursive, disjoint, and 

non-disjoint objects prevalent in CAD designs. Failure to do so, as is the case with 

the traditional data models, immediately disqualifies the candidate model for use in
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a CASE environment.

4. Model must allow multiple implementations/ configurations! and versions o f a design 

object.

As discussed above, the design process is an incremental, evolutionary 

experience. As any design evolves, numerous changes, updates, improvements, and 

techniques will be tried. It is necessary to manage this history for many reasons, 

most importantly for documentation of the design. Therefore, the model m ust have 

a structure and semantics th a t support multiple alternatives and version control. 

Most recent CAD data models have recognized and successfully met this need.

5. Model must allow ALL externally visible attributes o f a design object to be accessible 

to the designer.

This is a deviation from standard object-oriented programming process, 

where the internal details of implementations are universally hidden from the user. 

However, for a model supporting a CASE system that is dedicated to software 

reusability, implementation details are often critical to determining the suitability 

of a module in a given application. This criteria is further discussed in Section 

3.3.2. Many current object-oriented data models fail to support reuse on this point.

6. Each part o f the model should have a distinct boundary.

Distinct object boundaries are important in structured and object-oriented 

programming, such as Ada,5 where "scope" rules are critical. Without 

differentiating between the part of the design under a module’s influence and the 

part of the design that should be under the module’s influence, the important

5 Ada® is a registered tradem ark of the U.S. Government, Ada Joint Program
Office.
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concept of scoping can be violated. A scope violation occurs when a module makes 

a call or reference to either a subprogram or a variable th a t is not "visible," or 

accessible to the module, according to the rules of the implementation language.

The distinctness of object boundaries is also critical in database systems for 

efficiency of implementation. Without distinct boundaries, retrieval of a database 

object may cause some or all of the objects that are referenced by the object to be 

retrieved as well; this process could proceed indefinitely. In a model with distinct 

boundaries, only those objects specifically needed for an operation are retrieved by 

the database [Har85b],

2.6.3 For Semantic Modeling of CASE Data

7. Model must support all phases of lifecycle, from requirements through to maintenance.

In order to effectively support the front end of the software lifecycle, the 

model should separate product requirements and constraints from the definitions of 

existing components. This allows specifications developed during the planning and 

initial design phases to be maintained as requirements, and later retrieved for 

product documentation and maintenance. At the coding end of the lifecycle, the 

model should maintain design information in an implementation independent form. 

This allows maximum flexibility in applying the design to various source languages 

and environments. Most current CAD/CAM/CASE systems and data models only 

support the middle stages of the software lifecycle.

8. Model must be able to represent the complex data types that are prevalent in software.

CAD models that are capable of representing the design structures 

described in requirement 3 are capable of also representing complex data object 

types such are found in software. However, typical CAD semantic models ignore 

these data type representations. This is due to the situation found in VLSI CAD,
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where interfaces are typically pin lists, and are connected to other object interfaces 

by wires. Since there is only one type of data th a t travels over these wires, 

namely sin electrical signal tha t can be in one of only two states, more complex 

data representations are not addressed. In software, interfaces m ust pass data in 

the form of records, arrays, and linked-lists, and other such complex structures.

The data  model should explicitly provide a mechanism for representing the 

exchange of this kind of data.

2.6.4 For Capture of Design Data

9. Model must be compatible with graphical design paradigms.

A major feature of CAD/CAM systems is the ability to reduce the amount 

of text with which the designer m ust directly deal. Numerous graphical design 

methodologies have been developed in order to do this. In order to do this, the 

CASE system m ust monitor the actions in the graphical editors and affect those 

actions with a clearly defined subsequent action in the database. For accuracy in 

the design process, there can be no "guessing" in the data  capture algorithms. The 

operations used in the design process m ust therefore have a direct correspondence 

with the operations on the data model.

2.6.5 For Classification of Design Data

10. The model must contain machine recognizable classification criteria.

The necessity of classifying design components in a CASE system  for 

software reusability is clear; you must be able to store and later find needed 

components in the database. For reasons of efficiency, it is desirable to have the 

classification schema included in the design information. The machine can access 

this classification schema when storing the design objects, and then again when 

comparing and locating objects during retrieval. For the widest possible application,
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the method used should be readily understandable by the general user.

11. The model must differentiate between the component definition schema and the 

component requirements.

Current CAD models utilize database objects that define design components 

in the additional role of defining needed services. However, this has two 

shortcomings. First, a designer cannot change the structure of components in the 

public library of reusable parts whenever a local requirement changes; the 

integrity of numerous designs may be compromised. Therefore, the same database 

object cannot adequately perform both functions. Second, a semantic conflict arises 

during every access of a database object because the database system m ust first 

determine the role of the object before operations on it may proceed.

2.6.6 For Retrieval o f Design Data for Reuse

12. Model must support object retrieval strategies that successfully locate reusable 

components utilizing only abstract criteria.

Perhaps the most critical of the reusability issues is the problem of 

retrieving an object when information about the desired part is incomplete or 

innaccurate. Although many techniques have been proposed and many more are 

the subject of current research, whatever strategy is desired m ust (1) be 

supportable by current database systems, and (2) be supportable by the data 

model.

2.6.7 For Archive Storage of Reusable Components

13. Model must be compatible with an archiving method that supports distributed CASE 

environments.
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Most large-scale CASE systems are organized in a distributed fashion in 

order to divide responsibility for the project as well as to maximize parrallelism of 

effort. Normally, this kind of environment is supported by locating publically 

accessible components in a central location, library, or archive, with development 

work and partially-completed components stored a t local sites or private file 

directories. Although generally dependent on the CASE system implementation, the 

structure of the data model m ust be conducive to this concern.

14. Model must allow sharing of data among users in a distibuted CASE environment.

When many users are concurrently developing portions of a large project, 

or are working on different versions of a design, it is necessary to allow them to 

exchange their work in a controlled fashion. However, when sharing partially 

completed designs, the model m ust gaurantee the integrity of approved data in the 

archive. Privacy of local workspaces should also be protected. While not expressly 

the domain of the data  model, these concerns m ust be addressable in the context of 

the data  model.

2.6.8 Scalability

15. Each o f the data model requirements above must be viewed in the context o f being 

efficient for large scale applications.

Any CASE environment m ust be capable of supporting a large scale 

application. With this in mind, each of the reusability issues of data storage, design 

capture, classification of components, retrieval of components, and organization of 

a reuse library, m ust be viewed from a large scale systems perspective. Any data 

model that cannot support a CASE system for programming-in-the-large is 

inadequate.



www.manaraa.com

3. A NEW DATA MODEL FOR CASE

3.1 Introduction

The prim ary concern in choosing a data model for CASE is tha t it m ust address 

the reusability issues of design data capture, classification, retrievability, and it m ust be 

supportable by the underlying database system. The data model m ust also give 

consideration to the practical requirements of implementation, and any possible 

restrictions on access time and memory management.

This chapter s ta rts  by discussing various data  modeling options tha t were 

considered for CASE; these options were implemented as part of this research and 

found to be inadequate. A full explanation of the modeling methods that were developed 

and investigated, as well as the shortcomings of each method, is given. Throughout the 

process of developing an adequate data model, special attention is given to increasing 

software productivity through the reuse of software components tha t have been 

developed for other applications.

An analysis of the data models presented in the previous chapter reveals that 

one model; the molecular object model, is especially promising for use in a CASE 

system. However, this model needs modifications and enhancements before it can be 

considered adequate. An explanation of why the VLSI model is of interest is given, and 

details of the required modifications for application in a software development 

environment are discussed. The conclusion is tha t due to the lack of an existing 

semantic data model th a t meets all of the requirements facing CASE systems, a new 

model m ust be developed for this purpose.

Following the explanation of the shortcomings of the molecular model in CASE 

applications, a model based on the molecular object concept demonstrating good support 

for the reuse process is introduced. This Interactive Development Model (IDM) not only 

addresses the software reusability issues, but also is flexible and expressive for use in a

35
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CASE environment where program designs are constantly evolving and rapidly 

changing. After giving an overview of the structure and theory of the IDM, a detailed 

discussion of the model, allowable operations on the model, and semantic constraints on 

the model are given.

1.2 Approaches to CASE Data Models

1.2.1 Software Module as a Static Object

The Software Module as a Static Object data model treats the software module 

as a complete, autonomous entity, and provides semantics for defining the relationships 

between modules based on how they are declared. A software module is considered to be 

composed of a parameter list (interface), a list of the subprograms it declares, a code 

section, and a set of administrative header information. Modules are indexed by a 

surrogate tuple identifier (TID) that is assigned to each module and which is invisible to 

the user. This static object model was implemented and extensively tested in the early 

phases of this research, and is visually represented as an AND node in the AND/OR 

tree of Figure 3.1 [Pou88a]. 1

However, while the Software Module as a Static Object model is sufficient for 

describing a program as it looks on paper, it does nothing to convey the semantics of 

how the program actually works. This dynamic program information m ust be derived 

via an examination of the code portion of the module object and then determining from 

this code which modules are called. The code portion of this model consists of text in a 

pseudocode-style format, and does not provide a means for directly identifying modules 

tha t are called, nor retrieving them from the design database by means of indices or 

references.

‘AND/OR trees are described in Section 2.5.6 and the various types of 
AND/OR trees are shown in Figure 2.11.



www.manaraa.com

37

Module

/  / . . . " T . . . . . \  \
Header Parameter_list Module_list Code Coordinates 

Figure 3.1. The Software Module as a Static Object

Also, the static object model necessarily restricts the nature of the design data it 

provides and queries th a t can be supported. Since information on the dynamic activities 

of the module is not available, valid queries are only those that are based on the 

declaration structure of the program. Such queries include scope rules for module calls 

or the number and types of param eters in the interface of the object. Queries pertaining 

to control flow in the program cannot be supported.

There are several other shortcomings of this model. The first is that there is no 

provision for version control, and no support for the evolution of one module from 

another. The semantics of this model do not allow for multiple instances of a module 

object to simultaneously exist, a criteria which would be necessary for multiple versions 

and development histories to be supported. An additional shortcoming of the static object 

model is that there is no basic functional or descriptive information stored as part of the 

module object, making access for reuse difficult. This information is necessary both for 

classifying the module as a functional unit, and then later being able to retrieve it for 

use in another design. Finally, there is no way to represent or document the object 

other than via the basic static structure tha t is stored in the model. Other views, 

especially those tha t aim to convey the dynamic qualities of the program, are not 

supported.
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3.2.2 The Extended Static Module Object

The Extended Static Module* Object model addresses the shortcomings in the 

previous Static Object model th a t are associated with supporting multiple views and 

design methods. The extended static module object does this by extending the static 

model with the means to store additional documentation information. This additional 

information describes how the modules reference each other (calling sequence) and how 

the modules reference data (control block/common data access). However, this 

information is stored in the model primarily for documentation purposes and is not 

stored so as to be directly related to the information describing the static structure of 

the program.

This enhancement to the static object model is aimed at solving only one of the 

deficiencies experienced by tha t model; in particular, the problem of supporting a wider 

range of views of the design data. However, this model still has no provisions for 

version control or reusability, and for these reasons was found to be inadequate for use 

in a software development environment where program designs are continuously 

evolving and where the reuse of program code is desired.

For the enhanced model to address the problem of version control, a meta-object 

for management of these versions m ust exist. This meta-object controls references to all 

existing versions of a module. But since there is no place in the module for this 

meta-object to be stored, it m ust be a self-contained entity outside the data model.

Furthermore, for the model to address the problem of classification and 

retrievability for reuse, a classification schema must be stored as part of the model. 

However, there are two problems with this approach. The first is th a t the semantics of 

the static object are meant to model as closely as possible the textual representation of 

a module declaration. There is no place for classification information in such a textual 

declaration. The second problem is tha t if a classification schema was included in the
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model and used to find candidate modules for reuse, the search criteria would have no 

place to be recorded in the object. For example, if a designer required a sort routine a t 

some location in his design, he would query the design database for all modules with 

that function. However, if the requirements later change, or if new versions of a sort 

routine enter the database, the model does not allow the designer to "remember" the 

nature of the original queries so tha t the query process can be repeated or modified so 

that the best candidate routine can be found to m eet the new situation. This is 

especially important during the maintenance phase of the software lifecycle, and is a 

critical feature in a dynamic design environment where the design is constantly 

evolving. Therefore, it is necessary to save the the requirement specifications in the 

data model in order to search for reusable components and in order to m aintain the 

design.

In order to address these important issues, it is necessary to divorce the 

information common to a number of related modules from the information that makes 

them unique. This is crucial for an efficient version control mechanism, since it reduces 

the redundancy caused by storing information common to a series of versions. The 

information common to each version further provides a  central location to store 

descriptive information that can be used to classify and retrieve old components for 

possible use in new applications. As discussed below, further advantages are gained by 

dividing module object information into several parts.

3.3 The Interactive Development Model for CASE

3.3.1 Introduction

In light of the above approaches and issues, the Interactive Development Model, 

IDM, was developed and is proposed for modeling program design data in CASE 

systems. In this model, the software module is again considered the basic design object.
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However, the module is semantically divided into three component objects tha t are each 

tailored to the roles they play in program development.

The IDM is strongly influenced by the molecular object model of Batory because 

of a natural correspondence between the molecular view of VLSI circuits and the 

object-oriented view of software modules. First, there is the similarity between the VLSI 

interface, which is composed of a list of pins, and the software interface, which is 

composed of a list of param eters. Second, there is the correspondence between the VLSI 

implementation, which is composed of gates, subcircuits, and wires, and the control 

statem ents, calls to subprograms, and flow of control found in the implementation of a 

software module. The IDM extends the two-part molecular model in order to fully 

support the unique requirements of the software design process.

3.3.2 Changes to the VLSI Model

The molecular model needs to be modified for use in a CASE system in the 

following ways. First, the concept of instantiation needs to be adapted to mean a 

reference, and not a copy. Second, in the molecular model the interface of the object is 

used in two distinct roles, one in the definition of the object and one in the definition of 

a  call to tha t object. It is advantageous to divide the interface portion of the data model 

into two parts in order to accommodate this conflict.

Modification of the concept of instantiation is required in order to clarify the 

notion tha t in the final software product, just as in the software design, only one copy 

of a design object exists. Calls, or instances of the design object, are references to a 

software module; during execution of the program a call to a module results in the 

transfer of program control to the physical location of that routine. In VLSI design, an 

instance of a design object is a reference to a single copy of the design specifications for 

tha t circuit. However, in the final hardware product, every instance of a subcircuit in 

the design results in a copy of tha t circuit being created and placed on the chip. This
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view of instantiation, which implies the creation of multiple copies of the design object, 

is not appropriate for software.

The second change to the VLSI model involves the dual roles of the molecular 

interface. The problem with the interface in the molecular model is th a t the interface 

found in the declaration and the interface found in the module call are not the same, 

and, in fact, have completely different functions. The difference in these two roles is 

tha t the interface found in the declaration represents the object. Since it m ay represent 

many alternatives and versions of that object, there are strict limitations on how the 

user may modify the interface. The interface in the module call, on the other hand, is a 

request for service. I t differs from the declaration interface because it evolves with the 

design, and m ay not even represent a particular design object, especially early in the 

design process. Since the details of the request may change as the design develops, the 

second kind of interface should, in a sense, be more flexible, and be provided with 

operations that help guide the designer towards satisfying the need for service. An 

example of the two ways that a module interface is used is shown in Figure 3.2 

[Pou89].

W hat typically happens is that when a designer needs a subprogram to perform 

some function, he first searches the database for available routines. If he finds an 

appropriate routine, he incorporates the interface for that routine into his design as a 

subprogram call (what Batory would refer to as a socket). If not, he m ust design his 

own interface, thereby creating a new object. However, since the molecular model treats 

definition interfaces and request-for-service interfaces the same, the designer m ust fully 

detail the required interface at this time. This is because by treating the defining 

interface as common to many implementations, the molecular model necessarily places 

a host of restrictions on how they can be modified later.
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The software interface in the module declaration:

Procedure SortfVar Variablel: Arm y(1..100] of integer;

Variable2: Boolean);

The software interface in the module call:

SortfInteger_array, Error_flag);

Figure 3.2. The Two Roles of the Software Interface

W hat is needed is a meta-interface th a t provides a place for the designer to 

sketch the requirements for a subcomponent without the need to know exactly w hat he 

wants. A new object type, the call, is introduced to meet this need. The call not only has 

a much more flexible set of operations to allow the interface to evolve, but it also has 

an associated set of descriptive keywords and performance constraints th a t the designer 

may use to assist in selecting available components to fill the socket.

The resulting three-part model for software, termed the Interactive Development 

Model (IDM), is shown in Figure 3.3. The interface portion of the IDM is used 

exclusively to describe software modules, and plays the definition role of the molecular 

interface, as shown in Figure 3.2. The interface is composed of those components of the 

software module tha t are common to the various implementations of the module, and 

which may be needed by a program designer to select the module for use in a particular 

application. The alternative portion of the model is also used exclusively for describing 

the software module; however, the alternative defines the code and other 

implementation details of the module. In order to allow the existence of true alternative 

implementations, any number of this type of object may exist for a given interface. The 

final portion of the IDM is the call. This object represents a request for service, as
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discussed above. However, in describing the request for service in a sufficiently abstract 

way, the call bridges the gap between requirements and any object available to meet 

those requirements.

Each object in the IDM is a  hierarchical composition of a number of 

sub-elements that help the object accomplish its role in the data model and in the design 

process. The "Header" contains the object name as well as other administrative 

information about the object. 5 The "Description" in the interface and the call portion of 

the object consist of general comments and a set of keyword identifiers. These fields 

describe the object and what is needed of an object. The performance constraints in the 

module call correspond to the performance attributes in the module implementation and 

are used to describe the requirements of a  given call and how well a given alternative 

meets those requirements. Control of versions and alternatives is via association

abstractions, "Version list" and "Alternative list," located in the module alternative

and module interface. The relationship between interfaces, alternatives, and versions is 

depicted as an object hierarchy in Figure 3.4. A module is defined by a single interface. 

This interface may have any number of alternative implementations, and each 

implementation may have a history consisting of several versions. Further details on 

the composition of these fields and the exact function of each is given in Section 3.4, 

Details of the IDM, as well as in later chapters.

The addition of the call object to the molecular data model has an important 

consequence for the reuse of design objects. Because there are criteria in each portion of 

the IDM available to link requests for service with routines potentially able to meet 

them, the filling of module calls (sockets) should and can be automated. In many cases 

this may even be left until the design is compiled or validated. At that time, the 

program that compiles the design will have three sets of criteria on which to base the

5 In some programming environments the "Header" is referred to as the module 
prologue [Fra87].
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For Module Declarations:

Interface

/  / ' \  \
Header Description Parameter..! ist AIternative_list

For Module Implementations:

Alternative

/  \ - - - - K
Header Declarations Version_list Performance_Attributes

For Module Calls:

Call

Description Parameter_list Performance ConstraintsHeader

Bound AlternativeBound Interface

Figure 3.3. The Interactive Development Model

Implemen
tation

.Interface Version

Figure 3.4. Object Hierarchy

selection of an appropriate implementation for the call. First, the initial description of 

the call provides keywords that partially identify an interface. Second, the param eter
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list in the call is compared with the parameter lists in the potential interfaces in both 

number and type of param eters. At this point, if there are candidate routine(s), an 

interface for the call is identified, or a t a minimum narrowed to a few choices that the 

designer m ay easily browse. Finally, the performance constraints specified in the call 

are matched against the performance attributes of the implementations for the identified 

interface in order to provide a final selection of implementation. A detailed analysis of 

the design object retrieval and how the IDM addresses this issue is found in chapter 6.

The call object has the further advantage in that it allows software requirements 

to be stored as part of the program design data. No other semantic model for CAD has 

this feature. By storing software requirements as part of the data  model, the designer is 

able to develop requirement specifications using the same methods tha t he uses a t lower 

levels of design. This makes the model conducive to use from the initial problem 

statem ent through to the final coded program, providing the capability for a consistent 

"look and feel" at all levels of design. While software requirements m ust be saved for 

documentation of the design, they can also be used during the maintenance phase of the 

software lifecycle to update requirements and find new reusable components to meet the 

evolving needs.

The matching of constraints with performance criteria and the use of dynamic 

binding of calls to interfaces, alternatives, and versions, makes the IDM particularly 

effective for an evolutionary design process. Through the IDM it is possible for objects 

filling a call to be referenced explicitly as a specific reference, or implicitly by 

dereferencing what is called a generic reference according to some specified or default 

criteria. For example, a software module that calls another routine may reference a 

specific version of the routine by number, or it may be left as an implicit reference, in 

which case a version will be bound to the module call a t a later stage of design or 

implementation. The decision as to w hat version is to be bound will be made according



www.manaraa.com

46

to the constraining criteria, such as memory space limitations, algorithm speed 

requirements, or which version is designated the current version.

The "Bound" Field in the call portion of the data model allows the designer to 

remember an interface or implementation once he has located one in the reusable 

software library that will fill the call. The designer has the option to make this 

assignm ent perm anent or temporary. A temporary assignment would be used, for 

example, if he always wanted to fill the call with the latest version of an 

implementation. Each time the program design is evaluated for the purposes of design 

updates or compilation, the last version by date of an alternative would be 

automatically used to fill the call. A permanent assignment would be warranted if, for

example, he always wanted V I.2 of "Binary sort." When a permanent assignment is

used, no automatic binding during evaluation of the design takes place.

The advantages of an automatic binding capability were recently put forward in 

[Bee88]. Dynamic binding gives the designer the option of leaving an abstract 

specification in the design, with the assurance that it will always be filled with the most 

appropriate module available in the software archive. These advantages of dynamically 

binding design objects to sockets have also recently been recognized by Dittrich and 

Lorie [Dit88]. Their solution defines "environment" characteristics th a t are used a t run 

time to qualify candidate objects for sockets. These characteristics are stored as global 

information in the database. However, it is felt that it is better for conceptual clarity to 

incorporate this and all other design-related information directly into the design data. 

This keeps all the information related to objects utilized in a design physically as well as 

logically in one place.
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3.4 Details of the IDM

3.4.1 Introduction

This section expands on the general discussion of the IDM model found in the 

previous section. I t is a detailed explanation of the IDM data model and the rational for 

the various information contained in it. Implementation-specific details are not included 

in this discussion, except when, for demonstration purposes, it is advantageous to 

provide an example of a sample schema. The notation used for the data structures in 

this section is the And/Or tree, as described in Figure 2.11.

3.4.2 The Interface

The interface of the module serves to define the module object to potential users. 

It consists of the information common to all of the available alternative 

implementations. For the most part, once the interface is created, it cannot be modified, 

since changes to the interface would affect all of the implementations and could have 

unpredictable consequences. Therefore, significant modifications, including deletion, are 

only possible if there currently exist no implementations for the interface. A description 

of the valid operations on the objects that comprise the IDM and semantic constraints 

on these operations are discussed more fully later in this section.
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Interface

i  7
Int_Hdr_Info Description Parameter_list Alternative_list

Int Hdr Info

Int_Name Tag Date Designer

The interface header information, "Int Hdr Info," is a composite of

administrative information about the interface. For demonstration purposes it consists 

of the interface name, the name of the designer who created the interface, and the date 

that it was created. A commercial implementation of the model would include much 

more detail about the administrative data of the interface. The "Tag" is included as a 

synonym for the object, and may be used in place of the interface name when no 

conflict with other objects exists. The tag field serves a similar function for other objects 

in the IDM.
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Description

Comment Keywords

- A
File_name Sentence 

Keywords

~h ” /  " -/- \  — \ ~ -  \
Function Input Output Medium Language Environment

The "Description" of the interface is composed of comments and a series of 

keywords. These keywords are used to give a general description of the interface for 

classification purposes, and are used as search keys for retrieval in a reuse situation. A 

full discussion of the software classification issue and the use of keywords for 

classifying software components is found in a later chapter. For demonstration 

purposes, the keywords shown here are "Function," "Input," "Output," "Medium," 

"Language," and "Environment."

Comments are an unrestricted tool for documenting the object; every "Comment" 

in this example is shown as having two parts. One part is a short sentence describing 

the design object, and the other is a pointer to a text file where the user may store any 

documentation, diagrams, or data necessary.
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Parameter list

Parameter

y v
Variable Local_Name Direction

The "Param eter list" is an association abstraction of param eters; any number

of param eters m ay compose this list. Each parameter is a variable, and has a field for 

the direction tha t it passes information, in or out (or both in and out) of the module. The

"Local Name" for a param eter is used to record the name of the variable in the

module; the name of the param eter a t the point of call is the name of the variable 

comprising the parameter.

Variable

/ / / A  \ \
Name VID Tag Comment Declared_by Used_by Type

Alt_Name
Type

*

-A
Field Composition 

Variables all have a name and a comment describing the intention of the 

variable. Each variable that is declared in the program design is unique, and is 

identified by a variable identifier (VID), which is surrogate tuple identifier for variables. 

Variables also are of a certain data "Type." The type of data may be a basic type such 

as integer or Boolean, or it may be a compound type composed of one or several fields,
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such as a control block or PASCAL record. The variable "Type" is therefore shown as 

an association abstraction of "Field," which is the name of the field, and "Composition," 

which describes the field. A field may be a basic type or another type, which creates a 

recursive structure in the object. There are also backward and forward references,

"Declared By" and "Used By," that record where the variable is declared and where

it is used, thereby allowing efficient queries and fast access during design operations.

"Used By" is an association abstraction, indicating that the variable can be used in a

number of different alternatives of a module.

Alternative_list
«r

Alt_Name

The "Alternative list" provides links to all of the alternative implementations

for this interface. These links are keys used to index the implementations for the 

interface. The list may be empty, for example if the interface is newly created. 

However, for a design to be complete, every module interface in the design m ust have 

at least one alternative implementation in existence.

3.4.3 The Alternative

The purpose of the module alternative is to define one way of performing the 

function specified in the interface. The alternative implementation itself is composed of 

the information common to all of the versions of the interface. A version is stored via

an association abstraction in the "Version list" field of the alternative object. In order

to access a full alternative, the interface name, alternative name, and version number 

must be specified. If no version number is given, then the version for the alternative 

that is labeled ’current’ is retrieved.
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Alternative

/ -----------------------
Alt_Hdr_Info Declarations Comment Performance Version_list

Alt_Hdr_Info

/ '  !  / ■ \  — S  A
Alt_Name Int_Name Tag Declared_by Date Designer

Some of the fields in the alternative object are the same as those in the interface 

object and will not be explained again here. Of the remaining fields, the alternative

header information, "Alt Hdr Info," is essentially the same as th a t for interfaces,

with two differences. First, the "Int Name" field provides a backward pointer to the

interface for the alternative. This allows the interface information to be stored in 

exactly one place, rather than requiring a copy of the interface be maintained in each

alternative object. The "Alt Name" is the name of the implementation for the

interface. This field, together with "Int Name," serves as the key for the alternative

object in the database.

The second difference is the "Declared By" field, which is a backward pointer

to the point of declaration for the alternative, needed to make queries of the type 

"Where do you come from?" The field is analogous to the with clause of Ada [Pyl81, pp. 

77-78], in tha t it determines the source of the object code that comprises the module.
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Declarations

Subprograms Variables 
* *

Alt_Name VID

The "Declarations" consist of a list of subprograms, stored as alternative names, 

and a list of local variables. Alternative names are stored so that scope rules can be 

checked and enforced, for example, if the designer attempts to call a module that is not 

visible to the calling module. The declarations for variables are also used to enforce 

scope requirements. Notice that a variable which is local to a module is considered 

accessible to any of the subprograms declared by that module, according to the rules of 

a structured programming language. Variables that are global to the entire program are 

declared as local variables in the implementation of the main routine. This also provides 

a mechanism for the declaration of global data blocks, common data areas, and external 

Hies.
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Version List

Version 

/  /  ' J ~

Version_No History Representations Code

Representation

Date Who What Why Approval_date Approved_by

As mentioned above, version control is managed through the association

abstraction of "Version list" to the existing versions of the alternative. Each version

associated with an alternative has a unique version number, code, and modification 

history tha t documents who, how, and why it was created. Through the version history 

the evolution of the alternative implementation can be traced. There are also

"Approval Date" and "Approved By" fields for the validation of the design: these

must be dated later than  the modification date for the design to be considered 

consistent. The "Representations" are intended to support multiple views of the module 

by providing alternate documentation techniques to design or document the alternative. 

This field is therefore shown as an association abstraction of "Representation;" it is not 

further developed here.
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Code

LOC

/ \
CID Type Condition

The "Code" portion of each version captures the fundamentals of w hat the 

module does. Since the EDM seeks to be source language independent, the data structure 

above models only the three basic programming constructs in structured programming 

according to [Dij79]. In the IDM, the code of a software module consists of any number 

of individual lines of code, as represented by the association abstraction from "Code" to 

"LOC." Each code statem ent consists of three parts; an identifier stating the type of 

code construct, a call object identifier, and a condition for the call. The three basic code 

constructs of sequence, iteration, and selection are represented by "Type." The call 

object identifier, "CED," references a call object that is the abstract specification of the 

needed function or requirement. The "Condition" of the code statem ent is used only if 

the statem ent is an iteration or selection construct; it is the Boolean condition tha t 

determines if the statem ent is executed. In a commercial system this field would 

reference a variable in the database, and be subject to consistency checks on the scope 

and type of the variable referenced.

Performance

Component Version Time Space

Finally, the performance attributes of the alternative are recorded to describe 

the object in enough detail to provide criteria for selecting an appropriate alternative
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implementation for use in a call. These performance attributes correspond to the 

performance constraints that the designer specifies while developing the module call.

For demonstration purposes these performance attributes are shown to be "Time" 

complexity, "Space" required, the current "Version," and the logical "Component" that 

the alternative is a part of in the overall program design. Examples of logical 

components in an operating systems environment are the Dispatcher component, the 

Scheduler component, and the Paging component.

3.4.4 The Call

The purpose of the call is to provide a scratchpad area to develop an abstract 

service request and to provide database query facilities to assist the designer in the 

search for reusable components to meet that request. The operations available on calls 

are therefore very flexible and quite extensive. The call also records software 

requirements as they are defined at design-time for documentation purposes. It is 

important to note th a t the data structures shown here only outline the information that 

would be recorded in an industrial implementation of this model, especially considering 

that the call has a very important function as a requirements documentation tool.

Call

f=~r — v ^ = \
Call_Hdr_Info Parameter_list Description Performance Plug_Info

It is important to note that the call object does not define software components. 

That role is accomplished by the interface and alternative objects. The function of the 

call is to bridge the gap between requirements and components available to m eet those 

requirements. With this in mind, the major parts of the call object all play an important 

function in the reuse process. The keywords in the call "Description" are used to tell
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w hat is generally needed in the service, and are used by the system for an initial 

search of available interfaces. The process of locating candidate components then 

continues, using the other information comprising the call object. The needed

"Param eter list" is compared with the param eter list of the retrieved interfaces for

possible matches. Finally, the designer uses the "Performance" constraints to place 

restrictions on the performance attributes of the alternatives that may be used to fill 

the call. I t  m ust be emphasized tha t in the call, the values of the keyword attributes 

constrain the interfaces and alternatives that may be used to fill the call.

Call_Hdr_Info

/  7 /  V \  \
CID Call_Name Tag From Date Designer

The header information for the call object is similar in many respects to the 

administrative information th a t is maintained for the interface and alternative objects. 

Like those objects, the call has a name that it is known by, as well as a shorter name, 

for the same purpose. However, since each call m ust remain unique in the design of a 

program, the database system  assigns a surrogate tuple identifier for that purpose, 

called the call identifier (CID), to each call object. The "CID" is used to index and 

retrieve the calls from the database. The final addition to the call header is the "From" 

field. "From" is a backward pointer to the alternative that instantiated the call. This 

field makes it possible to efficiently retrace the flow of control sequence in a program.
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Plug_Info

/ / V \
Int_static Bound_Int Alt_Static Bound_Alt

With the exception of the field "Plug Info," all the other fields that comprise

the call object have been explained. "Plug Info" is used to record the keys of the

interface and alternatives used to plug the call once this information has been 

determined. As indicated, the user may elect to make this assignment permanent. If 

this is the case, the "Static" fields are set to the Boolean condition true, and the 

interface and alternative that are bound to the call are recorded in the "Bound" fields. If 

the "Static" fields are false, then final determination for binding these fields will be 

made dynamically when the program design is evaluated.

3.5 Operations and Practice

3.5.1 Introduction

This section provides a synopsis of the valid operations on the IDM and a few 

examples of how these operations combine to perform basic software design steps.

The purpose of this section is to illustrate how the model supports the software 

engineering process and software reusability. A complete and detailed discussion of the 

valid operations is given in Appendix II. As part of that discussion, a full analysis of 

the semantic constraints on the model th a t m ust be enforced throughout execution of 

the operations is given. The concise description of the operations shown on the next 

couple of pages is provided as an introduction and quick reference for the activities that 

follow. The activities shown represent common activities during the design process, and 

were carefully chosen to illustrate how many of the IDM operations are utilized to 

accomplish these activities.
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The complete ROSE implementation of a CASE system based on this data model 

includes several graphical editors for design data input, a combination of pull-down 

menus and text-entry boxes, and mouse-driven icons. These interface features are 

techniques designed to assist the designer as he interacts with the system and uses the 

reusability features th a t are built into the model. A description of the prototype CASE 

system  as well as a sample design session is given in chapter 8. The activities described 

below are given in an implementation-independent format with a syntax based on 

PASCAL to illustrate the operators for each action.

3.5.2 Operations on the IDM

The following three pages contain tables th a t outline valid operations on the 

IDM model. There is a table for each object in the IDM; first the name of the operation 

is given, then the purpose of the operation. Finally, the resulting action in the data 

model is briefly described.
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O perations on Calls

Operation Purpose Result

create_call: Add a software requirement 
specification to the design.

Creates an instance of a new 
call object in the database.

copy call: Create a new requirement 
similar to an existing one.

Invokes create call: then 
copies the attributes of an 
existing call into the new call

retrieve_call: Prepare a call for use in an 
operation.

Fetches a call from the 
database using a surrogate 
tuple identifier as a key.

edit_call: Allow’ unrestricted 
modification of a software 
requirement.

Call is retrieved and call 
editor invoked.

make_call: Assign location for a call in 
the design.

Call ID is added to code of ar 
alternative object.

unmake_call: Remove software request 
from design.

Erases a call ID from the 
code of an alternative object.

unbind_interface: Change interface used to fill 
a call.

Sets bound interface and any 
bound alternative in the call 
to "null."

unbind_alternative: Change alternative used to 
fill a call.

Sets bound alternative in the 
call to "null."

fill_call: Locate interfaces and 
alternatives to meet software 
requirements.

Automatically searches 
database and advises 
designer of results.

display_call: Allow designer to view call 
attributes.

Call is displayed on viewing 
device.

delete_call: Destroy undesired 
requirement specification.

Removes a call from the 
database.
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Operations on Interfaces

Operation Purpose Result

create_ interface: Define a new software 
module.

Creates a new interface 
object using the attributes of 
a specified call; adds the 
interface to the database.

copy_interface: Create new interface that is 
similar to an existing 
interface.

Invokes create_call and
copies attributes of existing 
interface into the new call 
object; then invokes edit_call

retrieve_interface: Prepare an interface for use 
in an operation.

Fetches the interface from 
the software library using tht 
interface name as a key.

search_fo r_  interfaces: Find reusable component to 
meet a software requirement.

Assists designer locate 
interfaces using keyword 
search and param eter 
matching.

bind interface: Use an interface to fill (plug) 
a call.

Associates an interface with 
a call in the program design.

display_  interface: Allow designer to view the 
attributes of an interface.

Interface is displayed on 
viewing device.

display_alternatives: Allow designer to browse 
alternative implementations 
of an interface.

Alternatives, are displayed on 
viewing device.

delete_interface: Destroy undesired interfaces. Removes an interface from 
the software library.
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O perations on A lternatives

Operation Purpose Result

create_alternative: Add a new implementation 
for an interface.

Creates a new alternative 
object in the database.

C0Py_  alternative: Make a new implementation 
of an interface that is similar 
to an old one.

Invokes create alternative; 
then copies existing 
alternative into new 
alternative object.

retrieve_alternative: Prepare alternative for use in 
an operation.

Fetches an alternative from 
the database library using
(interface_name,
alternative_name) as a key.

search_for_alternatives: Find reusable component to 
meet a software requirement.

Assists designer search 
alternatives using 
implementation specific data.

bind_alternative: Designate an alternative to 
meet a software requirement.

Associates an alternative 
object with a call object.

edit_alternative: Update alternative attributes. Invokes alternative editor.

display_alternative: Allow designer to view 
alternative attributes.

Alternative is displayed on 
viewing device.

display versions: Allow designer to browse 
versions of an alternative.

Show versions on viewing 
device.

delete_alternative: Destroy undesired 
alternatives.

Removes an alternative from 
the database.
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3.5.3 Practice

3.5.3.1 Action 1: Developing a Call

As an example of how the designer uses the IDM to develop an abstract 

request-for-service into a specific module instance, consider the case where the 

software designer has a need for special kind of sorting routine to be used in an 

I/O subsystem of a computer. In this scenario, the subsystem environment will be 

the MVS operating system. The current state of the design is shown in Figure 3.4; 

first the subsystem must queue incoming jobs, and then, if  there are jobs to print, 

they m ust be written to an output device. 6 The designer now wants the I/O jobs to 

be sorted by priority before they are printed, and so, using the operations provided 

above, the following actions are performed:

1. create call (var new call): A generic call is added to the design with all

attributes initially containing null values. A new instance of a call object is 

created and added to the database. This action may be portrayed by the 

instantiation of a call icon in one of the CASE system ’s graphical editors, as 

shown in Figure 3.5.

2. edit call (new call): The designer is allowed to enter desired values for the

attributes of the call. These values represent the constraints that interfaces 

and alternatives will be subject to when it is time to fill the call. For example, 

the designer sets:

new call.tag :=  Sort?,

new call.function :=  sort,

new call.input :=  unsorted integer array,

new call.output :=  sorted integer array,

new call.language :=  PASCAL,

‘The notation shown in this diagram is more fully explained in Section 4.5.
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P r i n t ?  °Queue?

Figure 3.4. A Partially-Defined I/O System.

/ Call?
\ /

Figure 3.5. A new Call Icon

new call.time :=  O(n-squared),

new call, version :=  Last

The designer may also enter administrative data such as the current date, his 

name, and any other information stored as part of the call. The results of the 

edit call operation are shown in Figure 3.6.

3. make call (new call, alternative, LOC type, LOC location,

LOC condition): The call is assigned a location in the "code" of an

alternative. F irst, the CASE system retrieves the specified alternative from

the database using the retrieve alternative operation. Next, the current

version of the alternative recieves a new line of code (LOC) of the type and in
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rS o r t?

Figure 3.6. The New Call After Editing

the location specified. For example, the designer wants this call to be a line of 

"Sequence" code, the second statem ent to be executed in the "MVS"

alternative of the interface "10 System." There is no boolean condition

required, since sequence statem ents do not have guards for iteration or 

selection. This operation may result in an arc, representing control flow, being 

drawn between the calling module and the called object, as shown in Figure 

3.7.

4. display call (new call): The system shows the completed call to the

designer. At this time, several activities may be selected. The designer may 

elect to continue to edit the call, in which case he returns to step 2. He may 

opt to search for interfaces to meet the requirements he ju st specified, in 

which case he proceeds to Action 2, below. Finally, he may ask the system to 

automatically attem pt to fill the call with a reusable component for him by 

invoking the operation fill call.

3.5.3.2 Action 2: Filling the Call- Searching for an Interface

The designer wants to use a reusable module in order to meet the 

requirement he outlined in the call object above. He has opted to conduct a search 

for a reusable interface to fill the call and consults the public software library for
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MVS
ICLSyst,

Print?  0Sort?Queue?

Figure 3.7. MVS I/O System with New Call

possible routines that might be available for his use. The following actions

transpire:

1. search for interfaces: The system and designer match the call constraints

specified in Action 1 with the interface definitions contained in the software 

library. Failure to locate a possible component normally results in the user 

varying the parameters of the search and trying again. This is accomplished

using the call editor invoked by edit call. When candidates for reuse are

identified, the system loads the interfaces into the local workspace using the 

retrieve interface operation.

2. display interface (current interface): After querying the software library the

designer discovers an existing interface for an integer array sort that appears 

as if it will serve the function he requires. In order to ensure that this is the 

case, the interface attributes are displayed for the designer’s inspection.

3. bind interface (var new call, current interface): Content with the interface,

the designer binds the interface, which in the example is called 

"Integer_Sort," to the call. In the IDM, the field new_call.bound_int : =

"Integer_Sort." The action might be portrayed by replacing the call icon in
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the graphical editor with an interface icon, as shown in Figure 3.8. At this 

point he m ay proceed to investigate possible alternative implementations for 

this interface.

3.5.3.3 Action 3: Filling the Call- Searching for an Alternative

Now th a t the designer has located a suitable interface and has bound the 

interface to the call, he desires to browse the available alternatives for the 

interface, in order to determine if one of those alternatives is suitable for his needs 

or whether he will have to modify, or completely design, one for himself.

1. search for alternatives (new call): The system and designer m atch the call

constraints specified in Action 1 with the alternative performance criteria for

each alternative of the interface "Integer Sort," which is currently bound to

the new call. As with interfaces, failure to locate a possible component 

normally results in the user varying the param eters of the search and trying

again. This is accomplished using edit call. When a candidate alternative is

identified, it is loaded into the local workspace by the system , using the 

retrieve alternative operation.

2. display alternative (current alternative): After querying the software

library the designer discovers a quicksort implementation for the integer 

array  sort interface that appears as if it will meet the constraints outlined in 

the call. This alternative is named "Quick." The alternative attributes are 

displayed for the designer’s inspection.

3. bind alternative (var new call, current alternative): If  the designer is

satisfied with the alternative, he binds it to the call. In the IDM the field

new call.bound_alt := "Quick." Graphically, the action is represented by

replacing the interface icon, which represents a call with bound interface, with 

an alternative icon, which represents a call with a bound interface and a
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Figure 3.8. Binding an Interface to a Call

I n t . S o r t y  lOuick  
-r l i n t  S o r t

v. 1

Figure 3.9. Binding an Alternative to a Call

bound alternative. This result of the binding action is depicted in Figure 3.9, 

and the I/O subsystem design as it now stands is depicted in Figure 3.10.

3.5.3.4 Action 4: Developing an Interface

Assuming that the designer was unable to locate an interface in the library 

tha t met his needs, he must create one that is customized for his own application. 

For example, consider that instead of sorting an integer array, the designer wished 

to search an array. The following actions are required:

1. create interface (var new call): An instance of a new call object is created

in the database. A call object is created rather than an interface object 

because editing interface objects is restricted in order to guarantee the 

integrity of module definitions. This is discussed more fully in Appendix II.
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Figure 3.10. The Resulting I/O Subsystem

Initially, all of the attributes of the new call object contain null values.

edit call (var new call): The designer enters desired values for the

attributes of the future interface. These values will define the interface and

serve as search indices in later search for interfaces. For example, the

designer sets:

new call.name :=  Integer array  search,

new call.function :=  search,

new call.input :=  sorted integer array,

new call.output :=  index,

new call.language :=  PASCAL,

new call.medium :=  ring buffer,

new call.environment :=  MVS,

The designer may also enter administrative data such as the current date, his 

name, and any other information stored as part of the interface header.

display call (new call): In order to check the values of all the attributes,

they are displayed for the designer’s inspection.

The last step is a decision as to whether or not to actually make the call into
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an interface using create interface, or simply save the call for later

modification. If the interface operation is committed, then the values of the 

call become locked as a new interface object and are unchangeable. Before the 

operation is allowed to commit, however, the interface name is checked for 

uniqueness. If the interface is not committed, the call is saved as a  new call

object in the database. If the operation is aborted, the instance of new call is

destroyed.

3.5.3.5 Action 5: Developing an Alternative

Assuming tha t the designer creates an new interface object, he normally 

proceeds to develop an alternative tha t will implement the function of the interface. 

In the IDM, the steps for creating a new alternative for an interface are similar to 

those taken when creating a new interface. The following actions are required:

1. create alternative (interface, var new alternative): An instance of a new

alternative object is created in the database. The interface th a t defines the 

alternative m ust be specified. Initially, all of the attributes contain null 

values. A null version of the alternative without code, tha t is, a version that 

could be called Version #0, is logically contained in the alternative.

2. edit alternative (var new alternative): The designer enters the alternative

editor and sets desired values for the alternative attributes. These values will 

define the performance attributes of the alternative and, as in for interfaces,

serve as search indices during the operation search for alternatives. For

example, the designer sets:

new alternative.name :=  Binary method,

new alternative.time : =  0 (log n),

new alternative.space :=  O(n),

new alternative.component := I/O manager,
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The designer may also enter administrative data such as the current date, his 

name, and any other information stored as part of the alternative header.

3. display alternative (new_alternative): In order to check the values of all the

new alternative attributes, they are displayed for the designer’s inspection. At 

the conclusion of this operation, the designer may commit the new alternative 

to the database or abort the operation, thereby destroying the newly created 

object.

3.5.3 .6  Action 6 : Developing Similar Modules

There are times when an interface or alternative is found that is very

similar to the one desired, and will suffice in the current application after some

small modifications. In this case, it is beneficial to be able to copy the existing 

objects, edit them, and then save the changes as a new object. The actions required 

are similar to those in Actions 4 and 5, respectively. However, the first step in 

each is replaced with:

1 . copy interface (current___ interface, var new call): Creates a new instance of

a call object, then copies the attribute values of the current interface into the

new call object. The interface name, since it must be changed, is not copied. 

The designer then treats the new call as in Action 4.

or...

2. copy alternative (current_alternative, var new alternative): Similar to

above, except that the interface representing the current alternative will also

be the interface representing the new alternative. This enforces the constraint 

that new alternatives are defined by the same interface that defines the 

alternative they were copied from. The designer then treats the new
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alternative as in Action 5.

3.6 Relationship of the IDM to Object-Oriented Program Design

One of the most im portant aspects of the object-oriented design paradigm is the 

encapsulation of certain parts of the design in order to hide implementation details from 

the user [Boo84, Pyl81, Wir85]. However, care m ust be taken so that during the design 

process certain key data  remains accessible. Much of the information th a t the designer 

requires in order to (i) retrieve appropriate design objects from the database, and (ii) 

select the best alternative implementation for his needs, is specific to the 

implementation and is not available by looking solely a t the interface for th a t object.

The data model above reflects the belief that, although one part of the object’s 

interface is, indeed, composed of the externally visible attributes common to all its 

implementations, the complete interface m ust provide access to all the externally visible 

attributes of a module, even those which are implementation-specific. The prim ary 

examples of such attributes are performance characteristics that may influence a 

designer’s decision to use tha t object, such as those required in order to conform to a set 

of design constraints. Other such attributes include memory requirements, object code 

size, and the time complexity of the algorithm. In the VLSI domain, such attributes 

include surface area, power consumption, and delay time.

In some respects this belief conflicts with the object-oriented paradigm because it 

extends what the user sees of an object to some aspects of the object’s implementation. 

However, closer inspection reveals that the true difference in this approach is in what is 

considered to be the role of a software interface. The interface must not only provide 

access to the common attributes of the objects it represents, but also allow the user to 

distinguish among available alternatives. If some criteria that may effect a decision to 

use a  module is only available by running the module, the interface is not completely 

doing its job. The key point is that such performance attributes are visible to the user,
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although perhaps indirectly. Therefore, this definition of the role that an interface plays 

in the design of programs is not so much in conflict with the principle of information 

hiding as it is a clarification of something not previously recognized by object-oriented 

programming advocates.



www.manaraa.com

4. CAPTURING DESIGN INFORMATION IN A CASE SYSTEM

4.1 Introduction

Current CASE systems incorporate one or several of the well-known software 

design methodologies into a set of tools used for the design of programs. These tools 

take the form of interactive graphical diagramming aids in which the designer develops 

the software product in a pictoral form according to the conventions of the particular 

methodology that he is using. It is then up to the CASE system to extract the 

necessary program design information from these diagrams and store this information 

in a meaningful internal representation.

The motivation for the use of pictures in the software process is the familiar 

adage th a t "a picture is worth a thousand words." Design diagrams help people to 

experiment with design ideas, helping the human reasoning process by providing an 

alternative view of textual specifications or programs [Buh89].

Complications arise when the internal database representation of the program 

design information does not easily correspond to the diagramming method used by the 

designer. In such cases it is necessary to infer certain information required by the 

model from the diagrams. However, while these deductions may help to complete the 

description of the design in the database, they may also lead to errors by introducing 

invalid assumptions about the program and intent of the designer. I t  is desirable, 

therefore, to semantically store program design data in a form that directly maps to the 

major software engineering methodologies and tools used to develop software.

In order to fully understand w hat these tools are and what design information is 

available from them, a survey of the major software engineering methodologies is 

conducted. This survey is divided into those methodologies commonly used for high-level 

conceptual software design and those methodologies used primarily for low-level design 

and programming. The goal of this study is to determine if there is some characteristic

74
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th a t binds these various diagramming techniques together. If such a characteristic 

exists, then (1) an appropriate internal representation can be found th a t easily 

corresponds to this characteristic, and (2 ) an optimum software design diagramming 

technique can be identified or developed for the efficient capture of program data. This 

chapter concludes with the presentation of a  new technique for the capture of design 

data in CASE systems tha t is powerful in its expressive ability and th a t is tied closely 

to the common aspects of the major software diagramming techiques.

4.2 High Level Design Methodologies

4.2.1 Functional Decomposition

Functional decomposition, modular programming, and top-down design all 

variations of the very strong structured programming movement tha t followed the 

landmark article by Dijkstra titled "Programming Considered as a  Human Activity" 

[Dijk65]. This article, among other things, expounded upon the divide-and-conquer 

approach to solving programming problems. All of the members of this genre depend on 

the stepwise refinement of a problem based on functional requirements. The result is 

progressively smaller problems th a t eventually can be solved with just a  few lines of 

code. The basic graphic tool in this design method is the tree diagram, with rectangles 

a t  the nodes representing an abstract function or problem to be solved. Children of a 

node are subproblems of that node, and lines to subordinate rectangles imply that the 

superordinate problem can be decomposed into the sub-problems below it.

The major considerations when doing Functional Decomposition are those of 

cohesion and coupling. Cohesion is the degree to which a module does one unique task. 

Modules th a t perform more than one task m ay have several types of cohesion, for 

example temporal (all actions tha t m ust be done at the same time), logical (all actions 

are of the same type) or the "worst" type, coincidental cohesion (little connection
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between the actions [Stev74, p. 208-217]. As designers and programmers, we should 

strive for the highest possible cohesion. The second consideration is that of coupling, 

which is the measure of interconnection between modules. For example, modules that 

are related by the passing of program flow have control coupling; the worst types of 

coupling are those that bind modules to the environment (common coupling) or to the 

contents of other modules (content coupling). One of the lowest forms of coupling, data 

coupling, is when modules are related only by the passing of data; we should obviously 

strive for the lowest amount of coupling possible. A program that is the result of proper 

functional decomposition should achieve both of these requirements.

4.2.2 Data Flow Design

D ata flow design is an analysis of the transformations made to information as it 

moves through a system. In its purest form it is functional decomposition applied to 

data. The key consideration is that the system may be thought of as being composed of 

information that is in a  continuous "flow," undergoing a series of operations as it 

evolves from input to output. [Pre82, p. 178] Data flow diagrams (DFDs) are the 

graphical tool that depict this flow and are, for those familiar with it, basically a 

network representation of the system [Myer78, p.47]. The diagrams consist of arcs 

representing data flow and bubbles representing data transforms. See Figure 4.1.

The data flow design process, as well as several modifications to the method 

(structured design, composite design, SADT), have been well defined by Myers,

Yourdon, and Constantine, and consists of the following [Pre82, pp. 182-192]:

1. Review the model by studying the system specification and requirements.

2. Construct and review the data flow diagrams for the software.

3. Identify the main transformation "center" of the diagram. Data incoming to this 

center is called "afferent;" data leaving this center is called "efferent." Delineate 

this transaction center on the DFD.
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Figure 4.1. Data Flow Diagram symbols
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Figure 4.2. First-level factoring
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4. Perform first-level factoring. That is, consider the system as being composed of the 

afferent flow, efferent flow, and transaction center. See Figure 4.2.

5. Perform second-level factoring. That is, decompose the bubbles in the DFD into 

more detailed, refined DFDs. In this m anner, "levels" of diagrams are created, 

with each subsequent level encompassing more detail in the system. See Figure 

4.3. The Final system will be composed of modules tha t are mapped from the 

lowest level DFDs.

Although many systems lend themselves nicely to data flow design, it is 

conceded th a t this method loses it’s usefulness as a low-level design tool since no 

representation for iteration or selection is provided. The DFD is powerful in its ability to 

quickly convey the general activities of a system, but without a means for explicitly 

generating loops and condition statements the diagrams cannot give the programmer 

the detail necessary for generating unique and correct data structures and control 

statem ents.

Stevens, Myers, and Constantine [Ste89], have developed a popular data flow 

technique th a t aims itself at getting the designer directly to a program structure. After 

the afferent, efferent, and transform center of the data flow diagram are identified, 

these are mapped into a tree diagram similar to th a t of the functional decomposition 

technique. In fact, the process they describe is, from this point on, very similar to 

functional decomposition. They do, however, include in their method a distinct 

diagramming notation for the program structure (Figure 4.4), as well as a method for 

including the interface information as part of the structure diagram. Each arc in the 

Structured Design diagram is labeled and has the param eters associated with the arc in 

a corresponding box elsewhere in the diagram. A sample template for a module 

interface form is shown in Figure 4.5.
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Figure 4.3. Leveling

4.2.3 Data Structure Design

4.2.3.1 The Jackson Method

Data structure design is based on structuring the program to reflect the 

input and output data structures. The major proponent of data structure design is 

Michael Jackson, and the design process and diagramming conventions that are 

discussed here are derived from his work [Jac75]. D ata structure design is used 

mostly in business applications where the data structures (commonly personnel and 

financial records) are well defined. The concept is th a t "paralleling the structure of 

input data and output (report) data will ensure a quality design" [Pre82, p. 206]. 

Like the data flow design method, the data structure method has a diagramming 

convention to assist as a graphical tool. However, the data structure diagram 

(DSD) follows more closely the style of the traditional tree diagram, with 

rectangles representing atomic data units and lines representing the "is composed 

o f ' hierarchy in the tree.
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Figure 4.4. Structured Design Notation

There are two points on which the data structure method is significantly 

different from the data flow method. First, the data structure method moves 

quickly to a procedural domain; the emphasis is on producing a software 

framework and of outlining tha t framework as early as possible in the design 

process. The data flow approach does not have this emphasis, and as such has a 

more definite boundary between the stages of high-level and low-level design. 

Second, the data structure method has constructs to represent the three major 

types of program statements of sequence, selection, and iteration, as shown in 

Figure 4.6 [Pre82]. The circle in the upper right of a node indicates the data 

component is conditional, for example, an employee may or may not be married. 

An asterisk in the node indicates iteration, for example, the employee may have
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Figure 4.5. Module Interface Form

any number of children. An absence of either symbol indicates sequence, in that 

the data record is constructed of the data components as taken in a left-to-right 

order. This convention allows the data structure diagram to be translated nicely 

into high-level code.

The process of data structure design is defined as follows by Pressman, and 

is illustrated with the following Figures from the text by Yourdon [Pre82, p. 207]:

1. Data structure characteristics are evaluated (Figure 4.7).

2. Data are represented in terms of elementary forms, such as sequence, 

selection, and repetition. The correspondence between the input and output 

data structures is noted (Figure 4.8).

3. Data structure representation is mapped into a control hierarchy for software
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Figure 4.6. Data Structure Diagram Notation
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Figure 4.7. Input and Output Data Structures

(Figure 4.9).

4. The software hierarchy is refined.

5. A procedural description of the software is developed.
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Figure 4.8. The One-to-One Correspondence

4.2.3.2 The Warmer Method

Another example of data structure design is the Warnier/Orr diagram, 

which is very popular in Europe, and particularly in France where it was 

developed [Dav83]. Shown in Figure 4.10 [Pre82], this methodology is similar to 

the Jackson method, differing primarily in the diagramming style. There is 

therefore a close correspondence between a Jackson diagram and a Warmer/ Orr 

diagram of the same system, and one can certainly derive either type of diagram 

from the other. There is also a method for mapping W arnier diagrams to 

flowcharts, known as the "logical construction of programs," which provides a 

step-by-step process to follow in going from a W arnier/Orr diagram to high-level 

code.

The data structure design methodology can be summed up as follows: "The 

process of finding one-to-one correspondences between the data structures is
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Figure 4.9. The Resultant Program Structure

fundamental to (the data structure) technique" [Myer78, p. 95]. Consequently, the 

major problem with this or any data structure design method is in applying it to 

applications where there are not well-defined data structures, or in situations 

where the input data and the output data are very dissimilar.

In the former case, simply starting the data structure methodology is 

difficult. In the latter case, we have what is known as a "structure clash." 

Jackson’s solution to this situation is to design an intermediate data structure that 

can act as a bridge between the input and output data representations. Jackson 

then proposes to use the data structure methodology twice, once to decompose the 

input data to the intermediate data structure, and then to map the intermediate 

data to the final output data structure. It is probably best, however, to simply use
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Figure 4.10. A W armer/ Orr Diagram

a different design method when one is faced with this situation.

4.2.4 Object-Oriented Design

Object-oriented design is the paradigm th a t is gradually challenging functional 

decomposition for the premier design methodology in industry. The method considers 

each data structure as a separate entity, and encapsulates this entity in a separate 

software package along with the procedures that are allowed to operate on it. When the 

data entity and the procedures are taken together in this fashion, they are considered 

an "object." The idea is th a t other routines are able to use the data and the operations 

in a black-box fashion, but are unable to see the details of their implementation, thus 

achieving a high level of abstraction, maintainability, etc.

In literature by Grady Booch, who is one of the major advocates of this method 

and the programming language Ada, Object Oriented Design is described as follows 

[B0 0 8 6 ]:

1. Write down (in paragraph form) the problem statement.
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Package Specification Package Body

Figure 4.11. Object-Oriented Design Symbols

2. Underline the nouns in the problem statement.

3. Underline the verbs in the problem statement that are associated with each noun.

4. Map the nouns to data objects and the verbs associated with each noun to 

procedures. Each collection of data objects and procedures is "packaged" together.

5. Repeat the process as necessary to realize the actions of each "verb" until the

appropriate level of detail is achieved.

The diagramming notation proposed by Booch is very simple and is capable of 

quickly conveying how the data objects and their operations are grouped as abstract 

data types. This grouping is called a package in the programming language Ada, and is 

shown in Figure 4.11. References between ADTs are pictorally represented by drawing 

lines from one package diagram to the other; however, as shown in Figure 4.12, these 

lines do not specify the type of interaction between the ADTs, and no provision for the 

three programming constructs is made. It should also be noted that in addition to the 

diagramming method proposed by Booch, there is the Buhr diagram, which is a 

proposed standard for Ada programs. Buhr diagrams, however, will not be discussed 

here [Buhr8 4].
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MAKE-CONCORDANCE

CONCORDANCE

DOCUM ENT

W O RD S

LINE-NUM BERS

Figure 4.12. An Object-Oriented Design Diagram

4.2.5 IPO Charts

IPO (Input/ Process/ Output) charts are forms that summarize on one page the 

im portant aspects of a module, such as the data it inputs, outputs, who calls it, and 

who it calls. The IPO chart also provides a general description of the module as well as 

important management information, such as the person responsible for the module. An 

example IPO chart is provided in Figure 4.13 [Dav83]. By itself, the IPO chart provides 

an excellent summary of a single module for reports and design reviews, but is unable 

to quickly convey the relationship between modules. For this reason, they are often 

accompanied by a structure chart such as one used by the functional decomposition 

methodology. In this case the name IPO becomes HIPO, for Hierarchy plus Input/ 

Process/ Output. The IPO charts then serve to complement the functional decomposition 

diagram in a nice way, and perform much the same task as the module interface form 

does for the structured design technique.
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IPO C h a r t
SYSTEM: Inventory_________  PREPARED RV- I .  Burk

M n m n  F- G et in v en to ry n A T T -  1 /5 /8 8

CALLED OR INVOKED BY: CALLS OR INVOKES:
U p d a te  in v en to ry

INPUTS: OUTPUTS:
* p- mpTT n u m b e r IN V E N T O R Y

M A S T E R R O R -F L A G M A S T -E R R O R F L A G

PROCESS:

G E T  inven to ry  m aster re co rd

l F m aster file read ■> successfu l

THEN TU RN  O F F  m a s te r ro r - f la g

ELSE (m aste r file re a d  n o t  su cc ess fu l)

SO T U R N  ON m ast-e rro r-flaq .

LOCAL DATA ELEMENTS: N O T E S : T h e  in v e n to ry  m a s te r
f ile  is a  d i re c t  ac ce ss  file  k e y e d
b y  p a r r  n u m b e r .

Figure 4.13. An IPO Chart

One advantage of IPO charts is that they could complement any methodology 

just as well as they do functional decomposition. They provide a standard format for 

presenting information about a module, independent of the design method being used. 

Assuming a program design exists in a database, the IPO chart could be completed for 

documentation or report purposes, for the most part by only reformatting existing data 

or by subjecting the database to queries for the needed information.
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4.3 Low Level Design Methodologies

4.3.1 Introduction

High level design methods are aimed primarily a t  establishing a modular 

structure for the software that is going to solve the problem a t hand. At some point in 

the design process, as the refinement of the problem proceeds, it becomes necessary to 

address the procedural details of the modules that have been established. For this task, 

low level design tools are needed. Typically, high level tools lack the detail needed to 

express single source code statem ents or sequence of actions. Likewise, the converse is 

true of the low-level tools in tha t they tend to provide too much information for a 

general overview of a large problem.

4.3.2 Standard Flowcharts

Standard flowcharts, as shown in Figure 4.14 [Mur75], were perhaps the very 

first graphical tool used to assist programmers in visualizing their programs. They have 

the advantage that they are readily understandable, even by persons untrained in their 

use. The symbols are simple and translate easily to code, often with a one-to-one 

correspondence.

The major problem with flowcharts is that they are, in a sense, relics of a dying 

programming style associated with FORTRAN programs. They allow arbitrary transfer 

of control in a program, something common in old FORTRAN code, but considered sinful 

by structured programmers. They also have no means of representing recursion, a 

powerful programming technique not available in FORTRAN but widely used today for 

certain classes of problems. However, the standard flowchart is still popular because of 

its simplicity and its powerful way of immediately conveying to the reader a sequence of 

actions.



www.manaraa.com

90
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A rectangle is used to  indicate a pro
cessing symbol (typically arithm etic opera
tions).

A diam ond is used to  indicate a deci
sion and the lines leaving the corners of 
the diam ond arc labeled with the decision 
results th a t are associated with each path.

The parallelogram is used to indicate 
any  basic inpu t or ou tpu t symbol. There 
are, in addition, many special symbols for 
inpu t-ou tpu t operatic,..s. -

An oval is used to indicate either the 
beginning or the end of a  program, i.e., a 
term inal st0p or s t a r t.

A sm all circle is used to  indicate a 
connection between two points in a flow
ch art in situations in which a connecting 
line between them  would c lu tter the basic 
flowchart.

Arrows are used to  indicate the di
rection of flow through the flowchart. 
Every line should have an arrow  on it, bu t 
the length of the arrow  is not important.

Figure 4.14. Standard Flowchart Symbols

4.3.3 Structured Flowcharts

The structured flowchart was developed to be the answer to the problems with 

the standard flowchart that were discussed above. Another name for structured 

flowcharts is the Nassi-Schneiderman diagram, named for the authors that introduced 

the notation in 1972. Examples of the structured flowchart’s symbols are shown in 

Figure 4.15, and an example of how a code segment would be diagrammed in this 

notation is shown in Figure 4.16 [Yod83J.

In the Nassi-Schneiderman diagram there are constructs for the basic operations 

of sequence, selection, and iteration. Each construct has exactly one entry and one exit, 

thereby disallowing arbitrary transfers of control. However, they have never achieved
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the -wide acceptance of the original flowcharts, possibly because they do not convey the 

flow of control in a module as quickly as do standard flowcharts. Another problem is 

that because each statem ent is represented by a box that is nested inside another box, 

in large sections of code, or in small sections that involve a lot of conditional branches, 

the space available for flowcharting may shrink very rapidly. This is a serious problem 

for a  person working on paper, although much less of a limitation for one using a 

graphics computer with the ability to expand the work area by "zooming in" or 

windowing. Like standard flowcharts, a properly completed structured flowchart may be 

translated directly into code [Yode78],

4.3.4 Finite State Machines

A special class of problems may be represented by the actions of a finite state 

machine. For example, the lexical analyzer of a compiler may enter different states 

depending on whether it is scanning character symbols or numbers, or whether it has 

recognized a reserved word or programmer-defined symbol. Each new input character 

specifies a transition to a new state and possibly an action to be completed upon 

entering that state, such as outputting a  complete token to the parser. For such 

problems, a finite state machine representation like that depicted in Figure 4.17 [GE87] 

is ideal.

In this diagram, the circles represent a state that the machine may be in, and 

each arc represents an allowable transition to a new state. Associated with each arc is 

a set of conditions that m ust be met for the transition to take place. This representation 

has the advantage that it, too, may be translated directly into code, although it has a 

major drawback in that the class of problems lending themselves to this type of analysis 

is quite limited.
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Figure 4.15. Structured Flowchart Symbols

4.3.5 Decision Tables

Certain types of problems that require multiple nested decisions are difficult to 

describe using the above methods. When a set of actions m ust be chosen based on a 

complex set of conditions, a tabular format as in Figure 4.18 may be easiest to 

understand [Lond72].

The numbers across the top of the table are rules, and represent the state that 

the all the conditions m ust be in for some action to occur. The following procedure is 

defined for developing a decision table [Pre82, p. 250]:

1. List all actions that can be associated with a specific procedure or module.

2. List all conditions or decisions that m ust be made during the execution of a 

procedure.

3. Associate specific sets of conditions with specific actions, or else develop every 

possible permutation of conditions.
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INITIALIZE ano  open  PILES

WRITE REPORT HEADINGS TO PRINT PILE

REAO PAYROLL PILE

0 0  WHILE NOT ENO OF PILE (ON PAYROLL PILE)

YTD FlCA< MAXPICA

YES

OEOUCTION •  PICA % ■ GROSSPAY

VTO PICA ♦ OEOUCTION 
s .  >  MAXPICA >

NO

OEOUCTION* 
MAXPICA -

YTOPICA •  YTOPlCA 
•  OEOUCTION

NETPAY •  GROSSPAY -  OEOUCTION

CREATE OUTPUT REPORT RECORO

WRITE REPORT RECORO TO PRINT PILE

REAO PAYROLL FILE

Figure 4.16. Structured Flowchart Example

TW> H O I  H I Mcaw  «• i n  m  i n  m

Figure 4.17. A Finite State Machine
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Conditions

Actions

Kuie
numbers 1 2 3 4 s

Fixed rate account T T F F F

Variable rate account F F T T F

Consumption <  100 KWH T F T F

Consumption > 100 KWH F T F T
Minimum monthly charge X
Schedule A billing X X
Schedule B billing X
Other treatment X

Figure 4.18. A Decision Table

4. Define the rules by indicating w hat action(s) occurs for a set of conditions.

The decision table may be directly coded much the same way as the other low 

level design representations can, since the table basically represents a  giant "CASE" 

statement. However, the table by itself has no means for representing sequence of 

execution or iteration. Therefore, its usefulness is, like the finite state machine, 

somewhat limited.

4.4 Mapping the Design Methodologies to Program Structure

4.4.1 Introduction

The net result that each of the software engineering methodologies seeks to 

achieve is a viable software product. This software product consists of modularized 

program code depicting the flow of control in the software product. It is also im portant 

to note that, with the exception of the object-oriented design method, there is a distinct 

bias towards programming in a structured target language such as PASCAL or PL/I. 

Therefore, the following discussion details the transformations that a CASE system 

m ust make in order to capture this kind of control information from the various 

diagrams tha t may be used for program design. The goal of this discussion is three-fold.
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First, this bias towards structured target languages leads us to believe that program 

design data should be captured in such a way that emphasizes the flow of control in 

programs. With this in mind, we seek to find the "best" method for capturing program 

design data, and eventually will present a new technique for this purpose. Second, 

understanding how these diagramming techniques interelate will prove important in 

developing a "standard" form for efficiently and effectively storing program design data. 

Third, by showing how each of the major methodologies maps to this standard form we 

can validate the usefullness of storing program design data  in such a manner.

4.4.2 High Level Design Methods

In contrast to the low level design methods, where all of the diagramming 

conventions basically depict the flow of control, the diagram  in the high level method 

m ay depict one of several things. It is important to remember, for example, that the 

DFD represents data flow, not necessarily any type of control mechanism. Likewise, the 

DSD is a  pictorial representation of the input and/or output data structures, and by 

itself does not show how program control is handled. I t is easy to loose sight of this 

im portant difference and interpret all of the diagrams as a type of flowchart, which, of 

course, is not correct. The following paragraphs discuss in more detail the conventions 

for mapping the various design methods to the flow of program control.

4.4.2.1 D ata Flow

As revealed in a previous section, the data flow diagram has no convention 

for expressing the basic programming building blocks of selection and iteration. In 

addition, the idea of algorithm sequence is not well represented since the DFD may 

show multiple flows of data that logically could be happening in parallel or 

independent of one another. In problems where there happens to be some form of 

sequence implicit in the algorithm and this sequence is not obvious from the
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direction of the data flow arrows, it is convention to assign the upper left of the 

diagram as the earliest chronological point and the lower right as the latest.

In order to derive the program structure from the DFD, it is necessary to 

examine each element of the diagram more closely. Since a bubble in the DFD 

represents a processing step, it could only map to one of two things. These are (i) a 

subtask (module) or (ii) a  basic statem ent of sequence code. Since the DFD is a 

high level design tool, the great majority of the bubbles will represent subtasks; 

only in extreme circumstances would one expect the low-level construct of actual 

code to be expressed. 7 The arcs, which represent data in motion, are analogous to 

parameter lists (module interfaces), and an arc from one bubble to another is a call 

to that module.

The mappings for the remaining two symbols in a DFD, however, are not 

so well defined. The first of these symbols is the data store. Data stores are, in 

essence, disk files, so references to them are equivalent to file read or write 

statements, depending on the direction of the arc in the DFD. Note that these are 

a type of sequence code and could be inserted as part of the future code for the 

module. However, one will would have to make non-trivial assumptions as to 

where they would appear in the sequence of processing. A logical assumption, 

though not always a correct one, would be to make data reads appear before any 

processing is done, and data writes appear after all processing is complete.

The final DFD symbol which needs to be addressed is the data source/sink. 

Quite often this data source/sink is a user who is sitting at a terminal. It may also 

be some kind of real-time monitoring instrumentation or control device. In any 

case, the bubble th a t directly interacts with the data source/sink must have as part 

of its function any communication activities or protocalls that may be required.

7 If this were not true, then the DFD would be little more than a special 
case of the standard flowchart.
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This may involve appropriate prompts, error handling for unexpected conditions, or 

specialized output messages or reports. None of these activities is directly 

represented as part of the DFD and is probably best included as part of the 

functional description of the appropriate bubble.

4.4.2.2 Second-Level Factoring

One technique of deriving a program structure directly from the DFD is 

described in [Pre82] as "second-level factoring." The DFD is completed and the 

afferent data flow/ central transform / efferent da ta  flow boundaries are depicted. 

Then, "beginning a t the transform  center boundary and moving outward along 

afferent and then efferent paths, [bubbles] are mapped into subordinate levels of 

the software structure" [Pre82, p. 187]. See Figure 4.19.

Second level factoring could be automatically performed and an initial 

program skeleton created for the user. It has the drawback, however, th a t the 

resulting program m ay need a lot of critical inspection and modification before it is 

considered "good." Since this final assessm ent is very difficult to formalize, it 

would be equally difficult to automatically enforce design decisions implied by the 

original DFD. Nonetheless, second level factoring is a viable technique for 

converting data flow diagrams into program flow.

4.4.2.3 Data Structure

The basic technique of mapping the DSD to program structure has been 

outlined in a previous section. The important thing to note is how the the program 

structure maps almost directly from either the input or output data structure 

diagram (in Figure 4.9 the program structure was derived from the output data 

structure). However, because of the recognition of iteration and selection in the 

DSD, there are several additional items tha t can be included in the code of the
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Cm

Figure 4.19. Second Level Factoring

modules.

Note the example DSD shown in Figure 4.20 [Pre82]. The DSD implies

that the controlling module for PAY REC contains code to the effect of

While not (condition) do PAY REC;

because the diagram symbol for PAY_REC contains an "iteration star." By 

interpreting the rest of the diagram in the same manner, the remaining code 

sequences in the figure could be derived and added to the program design 

automatically.

Of course, as is necessary for second-level factoring of a DFD, a thorough 

inspection of the resulting software must be conducted after the above process is 

completed.

4.4.3 Low Level Mappings

As alluded to in the introduction to this section, the correspondence between 

between low level design methods are much stronger since they all directly or indirectly 

indicate flow of control. As such, deriving a program skeleton from these methodologies 

is quickly explained with a short diagram or algorithm. These transformations are 

well-documented and have been produced in numerous CASE systems.
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R e m a i n i n g  r e c o r d s

PA Y -REC

D A T E S

P r o c e d u r e  PAY_REC; 
b e g i n
D a t e l _ r e c o r d ;
R e m a in in g _ r e c o r d s ;
end;

P r o c e d u r e  DATES; 
b e g i n
i f  D a te  >= d a t e l  t h e n  AFTER; (* some a c t i o n  r o u t i n e  *) 
i f  D a te  < d a t e l  t h e n  BEFORE; (* a n o t h e r  r o u t i n e . . .  *) 
end;

Figure 4.20. DSD-to-Code Conversion Example

4.4.3.1 Flowcharts

The major code constructs that the flowchart m ust represent are shown in 

Figure 4.21 [Yod83]. Note that the CASE statem ent, although not strictly 

required, is included for clarity. The CASE statem ent is important not only for 

making more aesthetically pleasing flow diagrams, but greatly assists in the 

flowchart representation of a decision table.

4.4.3.2 Structured Flowcharts

The constructs for structured flowcharts are shown in Figure 4.15, and, 

like the constructs for standard flowcharts, map directly to program flow of

D a le  >  d a t e D a le  <  d a l e

P r o c e d u r e  R e m a in in g _ r e c o r d s ;  
b e g i n
W h i le  n o t  ( c o n d i t i o n )  do  

DATES; 
en d ;
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IFTHENELSE

SEQUENCE

OOWHILE O O UN TIL

CASE

PROCESS B

PROCESS B

PROCESSA

"U N T IL "
PROCESS

"W H IL E "
PROCESS

PROCESS NPROCESS A

"T H E N "
PROCESS

"E LS E "
PROCESS

Figure 4.21. Standard Flowchart Code Sequences

control.

4.4.3.3 Finite State Machines

The finite state machine diagram is best referred to by the algorithm in 

Figure 4.22 [Pou88a]. This algorithm controls the state transitions of the machine 

based on the inputs to the machine. This algorithm assumes that the finite state 

machine is coded into a 2x2 array  or state table. It is just as allowable to specify 

each transition directly as a set of nested if...elsif...elsif statements; this latter 

method is actually required if the state transitions are specified by conditions that
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cannot serve as indices into the array. Note that the following algorithm consists 

solely of the basic code constructs tha t have been defined above.

4.4.3.4 Decision Tables

A decision table is quickly converted into an algorithm by recognizing that 

each rule can be associated with a clause of a CASE statement. A rule is 

determined to be true or false depending on the state of the condition variables in 

the top part of the decision table. Once this is done, a decision table is translated to 

into the CASE statem ent, just as the example in Figure 4.23 [Pou88a] has been 

derived from the table of Figure 4.18.

In this example, RULE is the number of the rule that was determined to be 

true. Note th a t we have set up the rules in the table so that they are mutually 

exclusive; ie, only one m ay be true a t any time. If we relax this restriction then 

we m ust use the alternate if...then...elsif form of the CASE statement.

4.5 An Approach to Design Data Capture

4.5.1 Introduction

It has been shown how design diagrams used by major software engineering 

methodologies map to a program skeleton depicting the flow of control in a final 

software product. This is the common goal of the many diverse methodologies surveyed, 

just as it is the goal of the designer to produce a working software product from the 

initial problem statem ent. I t  can be concluded that this requirement for a final code 

representation is a common thread that binds the methodologies together. Using this 

common thread as a basis for the design of a  data model for the capture of software 

design information promises to result in an efficient and conceptually elegant tool. 

Therefore, the premise of this chapter is th a t it is desirable to capture program design 

information in a m anner as close to this representation as possible.
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C u r r e n t _ s t a t e  := S t a r t _ s t a t e ;
W h ile  n o t  (an  a c c e p t i n g  s t a t e )  o r  ( f i n i s h e d )  do

C u r r e n t _ s t a t e  :*  S t a t e _ T a b l e ( C u r r e n t _ s t a t e ,  I n p u t ) ;  
C a se  C u r r e n t _ s t a t e  o f  :

{ p e r fo r m  t a s k  a s s o c i a t e d  w i t h  t h e  c u r r e n t  s t a t e  }

Figure 4.22. Code for a Finite State Machine

C a se  RULE o f :
1 ; M in im u m _m on th ly_ch arge ;
2 : S c h e d u l e _ A _ b i l l i n g ;
3 : S c h e d u l e _ A _ b i l l i n g ;
4 : S c h e d u l e _ B _ b i l l i n g ;
5 : O t h e r _ t r e a t m e n t ;  

end;

Figure 4.23. Code for a Decision Table

However, a conflict arises in two situations. The first is when a particular 

methodology, for example, the data flow method, is m andatory or prefered for use in a 

given application or environment. The second conflict arises when the designer has not 

yet developed the program design to a point th a t he can s ta rt to think or work with a 

flow-of-control representation. In these situations any of the above methodologies can be 

utilized. I t is simply necessary to provide the tools to convert the diagramming tool that 

is used into a structured program format as we have shown in this chapter.

This section first discusses early work on program design diagramming 

techniques. As part of this presentation, the shortcomings of the different approaches 

are explained. Finally, a data capture technique developed for use with the IDM is 

introduced.
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4.5.2 The P rog ram  S tatic  S tructu re  Diagram

Initial work on capturing program design data centered on a tree-style diagram 

th a t depicted how a program would be declared in a highly-scoped language such as 

PASCAL. This representation, called the Program Static Structure (PSS) Diagram, 

closely resembles the Functional Decomposition software engineering methodology in 

th a t it progressively reduces problems by dividing them into subproblems of manageable 

size. In the PSS diagram, a node in the tree corresponds to a  module that solves some 

specific problem.

The information contained in a PSS diagram is sufficient to outline a program as 

it appears "at rest," so a skeleton of the module declarations can be automatically 

produced. The diagram was originally intended to be used to enforce scope rules for 

data types, variable declarations, and module calls. It works well with the Software 

Module as a Static Object data model discussed in an earlier chapter.

The shortcoming of this type of diagram is that because it only depicts the 

module declarations in the program, there is no way to represent the flow of control. 

Furthermore, it is of little use to have the ability to check the scope of module calls in a 

diagram when there is no way to represent such a call. Another tool is clearly needed.

4.5.3 The P rog ram  D ynam ic S tructure Diagram

Changing the meaning of the arcs in a tree diagram to mean module calls rather 

than is declared by, allows flow of control to be represented. In addition, since these 

module calls are basically lines of sequential code, by adding the data structure diagram 

notation for iteration and selection, we can allow the designer to develop a program all 

the way down to the pseudocode level by using this kind of diagram. However, the 

diagram is still very useful a t a high level of design, because the lack of any symbol for 

iteration or selection as might be expected at such high levels does not restrict the 

interpretation of the diagram. The net result is called the Program Dynamic Structure
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(PDS) Diagram. Using the mappings shown in Figure 4.24 [Ber85], the flow of control 

in the target program can easily be captured from the PDS diagram.

Like the PSS Diagram, the PDS Diagram has a shortcoming in th a t while it 

does a great job of pictorally representing the dynamic activities of the target system, it 

does not have the ability to represent how modules in the program are declared. Of 

course, a  tool can be created tha t automatically derives an optimal declaration structure 

when the dynamic structure is complete, but it is often helpful to have the ability to 

specifically view the program ’s declarations during design [Rov88]. For this reason, the 

PSS Diagram as well as the PDS Diagram, or their equivalents, are deemed necessary 

for data capture in a CASE system.

4.5.4 Data Capture with the IDM

The method of data capture adopted for the CASE prototype includes both the 

PSS and the PDS diagrams. The diagrams are closely related in the application system 

in that changes made in one editor that effect the view in the other are automatically 

made by the CASE system. This combination of PSS and PDS diagrams gives the most 

powerful representation of the program design, and retains the designer’s ability to 

customize each type of program structure to his requirements.

The IDM is structured to reflect the flow of control in the target system. The 

foundation of the IDM consists of linking calls made by a module to candidate modules 

in the archive tha t are capable of filling the need of that call. Using the mappings 

shown above from the pictoral representation of the program design to pseudocode for 

the target system, the IDM is able to capture control data  directly from the PDS 

diagram and map it to the data model in the database. The pseudocode is then stored in 

the alternative object of the IDM as a sequence of calls. Data related to the declaration 

structure is likewise captured from the PSS diagram and stored in the alternative 

object.
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Figure 4.24. Symbols for Sequence, Iteration, and Selection

c
C a l l I n t e r f a c e  A l t e r n a t i v e

Figure 4.25. Icons for Calls, Interfaces, and Alternatives

The PDS diagram further contains an accomodation that provides for a 

meaningful representation for the three types of objects that comprise the IDM. In 

Figure 4.25, the icons representing these three object types, the call, the call with an 

interface bound to it, and the call with both a bound interface and bound alternative, 

are shown. When the program designer encounters a need for some service in a 

program, he represents tha t need by creating and placing the call icon in the PDS 

editor. As the abstract request for service is further developed, the designer either 

locates an existing interface in the archive to meet that service, or he develops an
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interface of his own. At that point, he may bind the interface to the call; in the PDS 

editor this is reflected by replacing the call icon with the interface icon. Finally, when 

an alternative for the interface is decided upon, and, in turn, bound to the call, the PDS 

editor replaces the interface icon with the alternative icon. Notice that the version of the 

alternative that is currently in use is identified in the diagram.

An example PDS diagram representing a partially completed mail facility for the 

MTS operating system is shown in Figure 4.26. The actions of the call in the root node 

is fully defined, as version #2 of the "MTS" alternative for the "Mail" interface is bound 

to the call object. The are three lines of code in that alternative:

Call Asynchronous Input;

Cadi Sort?

While (not buffer empty)

Call Output;

The call in the first line of code is filled with version #0 of the "Asynchronous" 

alternative of the interface "Input;" the code portion of that version contauns:

While (incoming messages)

Call Read?;

The iteration gaurd, "incoming messages," is a Boolean variable in the scope of the

alternative that has been specified by the user. The second line of code of "MTS Mail" 

is to a call named "Sort?" which has neither a bound interface nor bound alternative. 

The Kleene star marking the third line of code in "MTS Mail" indicates another
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Figure 4.26. Example PDS Diagram

iteration statement. This iteration gaurd, as above, is a Boolean variable that has been 

specified by the user. The call made in this iteration currently has the "Output" 

interface bound to it.

Because the PDS and PSS diagrams so closely model the types of objects 

represented by the three part IDM, the process of extracting design data from these 

diagrams is straightforward and efficient. Furthermore, all that is required to fully 

update the designer as to the progress of his program design is a glance a t the 

appropriate diagram. This ability to quickly convey large amounts of information in a 

single diagram is the quality of visual depth, and is a major distinguishing feature 

among visual methods [Buh89]. Visually deep methods provide most of the information 

through shapes and relationships in the pictures. Visually shallow methods provide most 

of it in related text or in such a distributed fashion that its impact is lost. A block 

diagram in which boxes are only used for partitioning is visually shallow; the PDS 

diagram (and its accompanying PSS diagram) are visually deep becuase they use
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shapes and spatial relations to effectively achieve the desired affect.
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5. CLASSIFICATION OF SOFTWARE COMPONENTS

5.1 Introduction

Once the software design has been captured in the CASE system, it is necessary 

to store the information in a m anner th a t allows the information to be retrieved quickly 

and efficiently. This is especially true in a CASE system th a t supports the reuse of 

software, since the designer would like to know as early as possible in the design 

process whether or not the component he needs already exists. If  this is so, he can 

substitute the component in his program without having to develop it himself.

Organizing available software routines into a library of reusable components 

may provide the program designer with the tools and opportunity to incorporate "old 

code" into his design. However, central to the problem of designing an appropriate 

catalog of reusable components is the problem of rigorously specifying the allowable 

uses of each component. That is, the capability to specify the class of contexts into 

which a  given component can meaningfully fit, and specifying the kinds of components 

that can fit within a given context.

Classification is the act of grouping like things together. All members of a group, 

or class, share a t least one characteristic tha t members of other classes do not possess. 

In this way, classifying objects displays the relationships among classes of things. A 

classification scheme, therefore, is a tool for the systematic ordering of things for the 

purpose of displaying relationships among them. These relationships determine where 

the things are stored and how they are later retrieved.

With this in mind, several observations and suggestions for a systematic 

ordering of software components have been proposed. However, The issue of software 

classification is particularly complex. Unlike VLSI hardware components, where the 

function of a component is fairly specific, in software there is an added difficulty 

involved in classifying a component due to the overall ambiguity and generality of

109
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software modules. There has been success identifying simple m ath and I/O routines for 

software catalogs. But while utility functions and some ADTs are well understood, a t 

higher levels of design a module is composed of more abstract ideas and complex 

algorithms, and m ay have many intermingled functions and side effects.

Most software retrieval techniques depend on the use of software keywords to 

classify the software component and serve as indices for retrieval. 1 These keywords 

provide both a broad-based description and a formal specification of the module in an 

attem pt to define the uses of the module for an appropriate application. The 

identification of a  software classification mechanism that is both suitable for indices in 

the software archive and is usable in a viable software retrieval strategy is the subject 

of this chapter. The following discussion is an overview of the options surrounding the 

classification issue and details the use of keywords for the classification of software 

components.

5.2 Software Classification Options

5.2.1 The Interface Definition of a Module

As part of object-oriented programming languages such as Modula-2 [Wir85] and 

Ada [Pyl81] the ability to separate module specifications and module definitions into 

separate compilable units has been forwarded. In this context the ModSpec and ModDef 

are analogous to the interface and implementation in the molecular view of design 

objects. In the IDM view of the two roles of the interface, the module specification is no 

more than the interface portion of the module used in the declaration role.

In keeping with the object-oriented philosophy, the ModSpec and ModDef are 

physically kept separate in the design of programs. The potential user of a software 

component is allowed to view only the part of the module th a t is revealed to him in the

’The organization of these indices and retrieval mechanisms is the subject of a 
later chapter.
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module specification; the implementation details of the module are protected and 

inaccessible. Furthermore, the gram m ars of these languages require that little more 

than the syntax of the module declaration be part of this specification. Information 

other than this declaration, for example, on the function or constraints on the module, is 

not available, thereby severely restricting what can be used for classification of the 

module.

5.2.2 Adding to the Interface Definition

In recognizing the need for more information, there have been several proposals 

that expand the amount of descriptive information included in the ModSpec or interface. 

According to [Mat84], in addition to the module specification of each routine, there 

should be lists of data describing:

1. Other modules of code required to execute the software module.

2. The language, operating system, runtime utilities, and input/output devices.

3. Automatic interrupts that effect the module.

4. The amount of memory required by the software.

These identifying factors significantly increase the amount of information available for 

the classification of the component. Of course, the more information available for 

classification, the more accurate the retrieval strategy can be when searching for 

candidate components to m eet the current requirement.

According to [Len87], a software component should be identified by a more 

formal specification. The specification should include:

1. A functional overview.

2. The syntax of the module interface.

3. A formal operations semantics describing the actions of the module.

4. All dependencies.

5. An example.
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While these observations are important in tha t they identify additional means that may 

be used to uniquely identify a module, no technique for cataloging or retrieving the 

modules is included in their research.

In the schema developed by [Che84], each program entity has a name and a set 

of attributes, which are essentially (type, value, version) triples. There are some 25 

distinct attribute types th a t range from descriptors, data types, and syntax 

specifications. This schema is not much unlike other techniques, except for the inclusion 

of a version number in the triple. This version number indicates how m any times that 

attribute has been modified.

5.2.3 Formal Semantics

Finally, there are various formal methods th a t have been proposed for the 

classification of software. In [Lit84], there is a formal specification language for 

software that is based on a formal algebra. This language uses catagory theory from 

the field of mathematics to deal with properties characterizing classes of algebraic 

structures. The argum ent is tha t catagory theory can provide the formalism required 

for specifying the externally viewed behavior of software components.

[Gog84] and [Der85] also propose to make formal denotational semantics or 

predicate calculus specifications, complete with preconditions and invariant assertions, 

part of a program library of frequently performed tasks. These methods have an 

advantage in that they can be shown to be correct by well-known proof techniques. In 

the words of [Gog84], there is "no junk" (everything has a purpose) and there is "no 

confusion" (the correctness of the function and classification criteria is provable).

An advantage of these methods is the accuracy that can be attained with formal 

semantic nomenclature. Furtherm ore, the exactness of the result may perm it most of 

the process to be completed automatically, including parsing design objects for input into 

the schedule and mapping formal requirement specifications to formal definitions of
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reusable parts. In the future these methods may well prove to be a required part of the 

software engineer’s toolkit.

However, [Lit84] expounds on several shortcomings of these techniques. Any 

method used for classification should integrate the design and m anagement of reusable 

components into proven current design techniques. The axioms of catagory theory, of 

course, have no equivalent in programming languages. Consequently, ensuring that a 

component implements the semantics of the theory will require additional tools in the 

development environment. Furthermore, because of the conciseness, power, and 

accuracy of formal semantics and the predicate calculus, they are very complicated for 

persons untrained in their use. This is a important factor in determining the usability 

and wider applicability of these techniques.

5.3 Use of Keywords for Software Classification

The most widely accepted means for classifying software tha t can be understood 

by the general user is the keyword list. However, due to the natural ambiguity and 

generality of software there is no accepted agreement on a standard technique or set of 

keywords for this purpose.

There are two general variations on the keyword option. These are to have a 

fixed number of keywords tha t take the role of attributes, each attribute assuming a 

value that describes the software component. An example would be to have Function as 

an attribute of the component, with a possible value of Sort. The other option is to have 

a variable length list of single keywords that are totally up to the designer’s discretion. 

A routine might then be classified by a list of keywords such as Sort, Quick, 

Integer_Array, Pascal, MVS. Such a method is similar to the one tha t authors use to 

classify their journal publications. The choice of method used depends on the retrieval 

strategy and interface mechanism the library designer wishes to use.
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Figure 5.1. The Faceted Classification Schedule

Recent work by [Pri87] and [Bur87] has been to identify candidate keywords for 

software classification. The listing of six keyword categories in Figure 5.1 is part of the 

faceted classification and retrieval technique proposed in [Pri87, Pri88]. Along with each 

of the six classification categories is a list of values th a t the user selects as the most 

applicable entry for the piece of software that he is classifying. The software component 

is then identified by the six-tuple comprised of the values for these six categories. 

However, since the selection of values for these keywords is subjective, the same 

component may be classified in different ways by different people. Without some means 

to group synonomous values of keyword attributes, a reusable component may not be 

retrievable in a given situation. In fact, an on-line thesaraus is used for this purpose.

The authors further studied this problem by asking a group of graduate students to 

classify a set of modules, and experienced from 100% agreement on the keyword for 

function to a 60% correlation on the keyword for medium. This finding substantiates the
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problem of trying to rigorously classify relatively abstract objects.

Figure 5.2 displays the desirable attributes about reusable components according 

to [Bur8 7]. The method suggested in their research is to combine two alternate 

mechanisms. The first is to permit the user to identify up to five descriptive keywords 

for each component. The actual length and contents of this keyword list is not 

restricted. The second mechanism is a category code system similar that used by 

libraries and publications such as Computing Reviews. Details of this category code 

schema are not given, and the authors admit th a t they have not been able to 

standardize the types of reuse information required to document components in a 

Reusable Software Library (RSL). They also suggest that standardizable techniques, 

such as objective metrics, are also needed to help system librarians rate  all component’s 

attributes on an equal basis. This would assist in the correlation statistics experienced 

by [Pri87].

5.4 Allowable Values for Keywords

The problem of allowable values for keywords is primarily one of vocabulary 

control. Without some restrictions on allowable values of attributes or keywords, the 

search space can become quite large and the time required for searching the lists of 

these keywords unacceptably slow. In the faceted schema, the user m ust choose from a 

list of allowable values for each of the six attributes. This process is made easier by 

assistance from a thesaurus, and effectively restricts the search space for each 

attribute.

Without a thesaurus or other automated assistant, it has been pointed out that 

the use of controlled vocabulary can actually be less efficient than with an uncontrolled 

vocabulary [Fra87]. The reason is that the user of the system must be familiar with the 

classification schedule and retrieval mechanism in order use them effectively. The use of 

a somewhat artificial controlled vocabulary, where conventions must be learned, may be



www.manaraa.com

116

Attributes Description

UNITNAME

CATEGORY CODE

MACHINE

COM PILER

KEYWORDS

AUTHOR 

DATE CREATED

LAST U PDA TE

VERSION

REQUIREM ENTS

OVERVIEW

ERRORS

ALGORITHM

DOCUM ENTATION 
AND TESTING

The unitname is the name of the procedure, package, or 
subroutine.

The catcode is a predefined code that describes the 
functionality o f  the component.

The machine signifies the computer on which the 
com ponent was programmed.

The compiler signifies the compiler used during 
development o f  the component.

Keywords are programmer-defined words that describe 
the functionality o f the component.

The author is the person who wrote the component.

The date created is the date the component was 
completed.

The last update is the date the component was last 
updated.

The version is the version number o f the component.

The requires field contains information about any special 
requirements o f  the component (eg. other components 
that must be available).

the overview o f  the component contains a brief textual 
description of the component.

The errors field contains information about any error 
handling or exceptions raised in the component.

The algorithm field contains the algorithm used in the 
design of the component.

The documentation and testing field contains a 
description of available documentation about the 
component and a description o f test cases.

Figure 5.2. The RSL Classification Schedule

a barrier to the effective use of a library retrieval system by anyone who is not an 

information specialist. The automated assistants help break down this barrier by 

providing a certain portion of the expert knowledge that normally requires the presence 

of a full-time librarian.

The allowable values of keyword attributes are not the only concern. The format 

and data types of the attributes are also critical in determining the types of searches 

that may be supported as well as the subsequent efficiency of these searches. For
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example, retrieving all module interfaces with Function=Sort is a straightforward 

search easily implemented in any database system. However, locating all interfaces 

designed after a given date may require a mathematical comparison of values of type 

Date, a value tha t may be comprised of the three fields Day, Month, and year. While 

this option may be complex to implement, choosing to store this data type in a Julian 

form at can reduce complexity of the search algorithm significantly. The allowable 

search operations and retrieval methods should be evaluated before the allowable values 

of the keyword attributes are determined.

5.5 Approaches to Software Classification with the IDM

5.5.1 Introduction

There are two complete software classification techniques th a t are implemented 

as part of this research. The first technique discussed is the static classification 

schedule, which consists of a set of pre-determined keyword attributes, the values of 

which provide a broad description of the software module. This method has the 

advantage in tha t it encourages the designer to provide a description of the module in 

each of the chosen areas. This method is also somewhat more straightforward to 

implement, particularly with regards to a consistent user interface to the classification 

schema.

The second method tha t was implemented is based on a variable length list of 

keywords, similar to that used by journal authors when giving subject keywords for 

their articles. Each module has a list of single keywords tha t describe it; this list can be 

of any length. This method has the advantage in tha t it is much more powerful than a 

predetermined list, but implementing an efficient search mechanism and interface to 

this schedule is correspondingly more complicated. This technique also has the potential 

to be abused by a designer, who may simply fail to provide any keywords, or may give
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several that are so closely related to each other as to be worthless.

5.5.2 Static Classification Schedule

The Static Classification Schedule used in this research is based on the work 

done by [Pri87, Bur87, Rei87], as well as personal experience. This method uses the 

two-tuple technique of (attribute, keyword) to describe various qualities of each software 

module. There are six keywords used for describing interfaces and for making 

constraints in calls. These are: function, major input, major output, medium, 

environment, and language. "Function" is the most important of these, and describes 

the general action of the module. "Medium" relates to the larger data structure that the 

routine acts on; for example, a ring buffer or sparse matrix. "Environment" is wher' 

the routine works; for example, a specific operating system. "Language" refers to the 

source code language.

The use of the keywords in this implementation is not in any way constrained 

by the system, in the sense that the user must make specific entries or choose valid 

attribute values from some list. I t is also important to remember th a t these keywords 

were derived from a number of different sources and are not conclusive. These 

particular keywords were chosen only to be representative of a classification schema 

that might be used in a functional CASE system and demonstrate tha t the IDM model 

can operate, in conjunction with a software library, with such a schema.

For the classification of alternatives, three keywords are used. These are time 

complexity, space complexity, and component. Object code size could also be used, but 

this was not implemented. The keywords, for time and space complexity are m eant to 

contain values such as 0(log N) and O(n-squared), but like the keywords for interfaces, 

there is no restriction th a t enforces this intention. The keyword "Component" refers to 

the logical part of the system that the routine works in, as opposed to a physical part; 

for example, the Output Manager. Unlike the keywords used for interfaces, these
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keywords were derived solely from personal experience.

The advantages of this selection of keywords are many and diverse. First, these 

keywords are some of the most widely accepted classification attributes for 

retrievability. Second, they represent a broad description of the module rather than 

perhaps concentrating on one area, such as function. Third, the classification attributes 

can be incorporated into the user interface for the prototype CASE system in an elegant 

way. How the prototype implementation incorporates this schema into a practical 

interface is discussed in Chapter 8 and shown extensively in the Figures of that 

chapter.

The IDM is designed to accomodate the classification schema directly in the 

object structure. The interface and call objects both employ the six descriptive keywords 

described above; the alternative and the call both employ the three keyword scheme.

The difference is in how the call uses the keywords; in the call the values of these 

keywords serve to constrain the interface and alternative objects tha t m ay be used to 

meet the call, where in the other two objects the keywords are exclusively descriptive. 

The call has the further responsibility of recording the software requirements for 

documentation purposes, a task adequately accomplished by the nine keywords and 

comments stored in the call object.

5.5.3 Variable Keyword Lists

The second option implemented for the classification schema is based on the 

variable length list of keywords technique. In this technique, the designer assigns any 

number of single descriptive words to each object. These keywords can relate to any 

attribute of the software; an example of such a list is shown in Figure 5.3. As in the 

static schedule above, the list of keywords is recorded in the IDM as part of the model. 

Each of the interface, call, and alternative objects contain a keyword list; it is up to the 

retrieval mechanism to match those keywords in the call to those in the interfaces and
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alternatives when the designer is attempting to fill a call with a reusable component.

This technique was implemented as part of the research but was not chosen for 

the final implementation because it has the disadvantage of not encouraging or 

enforcing a broad classification of the module. Furtherm ore, a consistent interface 

providing uniform access to such a list is difficult with available software tools. It was 

important, however, to determine tha t the IDM could function in conjunction with this 

method.



www.manaraa.com

121

D e n t il  a  g|
S o r t
I n t e g e r _ A r r a y  

MVS_Operating_Syetem  

M e s e a g e _ B u f f e r  

IO _Subsystem  

PASCAL

C r e a t e  Keyword 

D e l e t e  Menu

Keywords are:

Figure 5.3. Describing a Module with a Keyword List



www.manaraa.com

6. RETRIEVAL OF SOFTWARE DESIGN DATA

6.1 Introduction

Retrievability is the degree to which a software module can be stored, selected, 

and used by users who have no prior knowledge of its existence. The retrievabiltiy of 

software in a CASE system supporting reuse further includes the mapping of some 

conceptual or abstract specification of w hat is to be accomplished into a very specific 

data representation and algorithm that can be located in the software archive to 

accomplish the task a t hand.

In short, in order to use a software module, you m ust be able to find it.

The issue of fast and efficient data  retrieval is a major consideration in the 

design and analysis of database systems [Dat85a, Dat85b, Haw84, U1182]. 

Consequently, the combination of indexing methods and data retrieval techniques in 

traditional applications is well understood. These applications, however, generally 

presuppose th a t the search space is well-defined and exact. On the contrary, the 

designer of a software system in a reuse environment seeks to retrieve software 

components based only on a vague understanding of w hat is needed and with no 

knowledge of what is available to meet tha t need. This chapter addresses techniques of 

indexing reusable components so tha t the conceptual mapping from requirements to 

availability can be made a reality.

6.2 Accessing Design Data

6.2.1 Desired Operations

The retrieval of design objects is required for two purposes; supporting the 

design process and supporting interactive queries about the design. These queries may 

be of an ad hoc nature to meet a variety of requirements, or may be systematically 

made as part of the automatic generation of design documentation and reports.
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Retrieval of design objects during the design process is most often hidden from 

the user by the graphical editor or design tool. Since these operations repeatedly access 

closely related data, these retrieval operations are most efficient when the design data 

is clustered, or semantically stored in an object-oriented manner. Administrative and ad 

hoc queries are more often of a global nature, typically entailing questions about the 

entire design. Such queries are more efficiently handled by a relational database, in 

which efficient algorithms and operators are available for accessing large quantities of 

information. For most of the standard data retrieval situations in a CASE system, the 

retrieval issue is similar to the arguments found with the data modeling issue; there is 

a trade-off between grouping data as objects for design operations versus grouping data 

as relations for global operations and queries.

In a CASE system supporting reuse, however, there is the unique problem of 

having to retrieve design objects without necessarily knowing w hat is being sought, nor 

w hat is available. There exists a need for an object retrieval strategy tha t is flexible 

enough to be used early in the design process by providing the program designer with 

hints and other assistence tha t may lead him to candidate reusable components. The 

retrieval mechanisms discussed below are therefore intended to m eet not only the usual 

retrieval needs of the design process, but are specially intended for use in a reuse 

environment in situations where program requirements are ill-defined.

6.2.2 Indexing Strategy

One possible indexing strategy is to have the supporting database maintain an 

index for every classification category possible. This allows for the most speed and 

flexibility over the widest range of queries. For example, in the faceted classification 

schedule of [Pri87], a total of six indices would exist, one for every entry in the 

classification tuple. This allows very rapid access for queries specialized to only one 

entry in the tuple, assuming wild-card values are valid for the other entries.
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However, such a technique is not without its disadvantages. In this case, the 

problem is essentially one of a time/space tradeoff; for the luxury of fast response times 

for specialized queries, the cost is the memory and disk space required for the indices as 

well as other overhead required to maintain the indices. For classification schedules 

with considerably more classification attributes, there m ust exist a point where 

maintaining an index for the additional attributes is no longer practical.

At the other extreme, there is the option of not maintaining an index for each 

attribute, and using sequential searchs to locate the information. Clearly, for large 

search spaces or for queries th a t are commonly executed, this option is not desirable 

because of the time tha t is required for these linear searches.

Interestingly, several research efforts tha t have discussed the software 

classification and storage issues have neglected to address the issue of retrieval. For 

example, while [Len87] is quite concerned about the classification of the reusable 

building blocks in an operating system  environment, no means for the retrieval of these 

blocks during the design process is discussed. Of course, some indexing or retrieval 

technique m ust be included as part of the complete CASE system. The following section 

introduces candidate retrieval techniques and outlines some of the advantages and 

disadvantages of each.

6.3 Indexing Techniques

6.3.1 Software Catalogues

The simplest indexing technique is perhaps those used by the published catalogs 

of software utility routines. Such catalogs are found as part of the user m anuals of 

large computer systems, or are published in book form as an accessory to the computer 

system. Examples are the m ath packages available on the mainframe computers at 

most research centers [DeB85, Cor87], and program libraries such as for the Apple or
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IBM series of personal computers [Rug86].

These software catalogs use a table of contents to list the available routines in 

the library. Such routines are usually grouped into "chapters" by function, such as 

placing all trigometric utilities together, all sorting functions together, all graphics 

utilities together, etc.

The method of retrieval in software catalogs consists of having the user scan the 

table of contents for the routine tha t meets his need. The grouping of related routines 

into chapters makes this process fairly straightforward, and since the user is 

accustomed to using the table of contents in books, he is generally comfortable with the 

method and able to use it with a  minimal amount of instruction.

The primary disadvantage with the software catalog is that it is difficult to 

autom ate and incorporate into a  CASE environment. In addition, this method only 

works well with a small number of routines. I t  is not practical to expect a user to 

m anualy browse through a library consisting of thousands of candidate components, nor 

is is reasonable to expect to give him enough information in the table of contents to 

distinguish between a large number of closely related components.

6.3.2 Multilists

One technique which is exceptionally flexible and straightforward to implement 

within the framework of conventional database systems is the multilist indexing 

structure. A multilist index, as shown in Figure 6.1 [Wie87], consists of an index record 

for each value of the attribute th a t describes the software component. From that index 

record there is a chain of pointers to records, each containing the address of a software 

component with that value for the attribute. 9 Queries of the type

9 Again, a tradeoff exists between the size of the directory (multilists) and the 
length of the search in the main file. The opposite of the multilist structure is 
the inverted file, in which there is one index record for each value of the 
keyword, and the length of each multilist is one record.
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Figure 6.1. A Multilist Index

Select Interface Names

From  Interfaces 

W here Function= Sort

result in traversing the chain of records for Function= sort in order to quickly provide 

the keys for the required interfaces.

When two or more search criteria are specified, such as in queries of the type

Select Interface Names

From  Interfaces 

W here Function= Sort

And Algorithm= Quick

a join operation is used by the database to merge the two resulting lists of candidate 

components. The join operation compares the two lists and extracts the keys of the
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components tha t are common to both lists.

This technique has limitations when the number of possible values for each 

attribute is large and is allowed to grow. In this case the amount of space and overhead 

for maintaining the multilist structure becomes unacceptably excessive. For this reason, 

the maximum length of the multilist in applications system s is often controled.

However, because the capability for implementing the multilist index is often a one of 

the features of the supporting database system , and because the method is well 

understood, it is a popular technique.

6.3.3 Cluster Theory

Cluster theory is a file organization technique for document libraries th a t has 

had an important influence on several of the software library retrieval strategies to be 

discussed below. In cluster theory, documents carrying similar content descriptions are 

grouped into clusters [Sal75]. These clusters are identified by a representative cluster 

profile, or centroid. The centroid is a weighted set of term s derived from the descriptive 

vectors from the documents included in the cluster.

The descriptive vectors of a document come from the classification method used 

for the documents. The vector is the result of some algorithm th a t compares lists of 

keywords, catalog numbers, or some other criteria. In software, m any of the 

classification methods classify the component by a fixed set of attributed keywords. By 

imposing an ordering on these keywords and considering the values for the keywords as 

an n-tuple, the result is a document vector as required for this and other classification 

and retrieval strategies.

A search in a clustered file proceeds as follows. First, the target vector is 

compared with the index file of centroid vectors. Second, documents within the candidate 

clusters are ranked in decreasing order according to their closeness to the target vector. 

Finally, individual documents are retrieved and examined. It is clear th a t the "depth" of
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the search can be easily controlled in a clustered file because it is possible to search 

only the "best" cluster, or, if desired, the top two clusters, or the top ten, as necessary.

In traditional cluster theory the clusters are automatically generated by the 

database system, and a document is allowed to occupy a place in more than one cluster. 

Furtherm ore, documents may be moved from one cluster to another if it should prove 

useful. The physical grouping of the documents in secondary storage is also assumed to 

be managed by the database system  in order to optimize the number of disk accesses 

required to retrieve all of the documents in a cluster. However, in some of the retrieval 

mechanisms utilizing clustering techniques that are discussed below, these requirements 

m ay be relaxed.

6.3.4 Associative Networks

An associative network is a tree structure in which the internal nodes of the 

tree form the index for the components [Dep83]. This method requires a set of 

"features," or (attribute, value) pairs, that can uniquely characterize each component. If 

we think of the set of these features as basis vectors of n-dimensional space, then each 

element of library can be viewed as a point in the space. The vector th a t describes a 

given element is called the pattern vector.

Each software component in the n-dimensional feature space having a similiar 

descriptive vector is grouped into clusters; the clusters are represented as a hierarchical 

tree. The root of the tree determines the search node at the first level down the tree by 

comparing the pattern vector of the desired element to each of the first level nodes and 

taking the child that most closely matches the target. Further levels of the tree are 

traversed by sequentially accessing the "closeness" of the next descriptor in the pattern 

vector with each of the immediate successors of the current tree node. P art of a sample 

associative tree index for software is shown in Figure 6.2. The goal of the index 

traversal is to identify the cluster of library components that has a feature vector most



www.manaraa.com

129

SOFTWARE

UTILITYAPPLICATIONSYSTEM

ACCOUNTING MANAGEMENT SCIENTIFIC

/ \  / X  A

Figure 6.2. An Associative Tree for Software

closely matching the target pattern vector.

The fundamental problem with this technique lies in tha t the values assigned to 

the feature vectors in the associative network m ust be orthagonal. Orthogonal values 

occur when only one value for each attribute could be considered to accurately describe 

a component. If the values for an attribute are orthogonal then classification of the 

components and their subsequent grouping into clusters is easy. If this is not so, several 

problems arise. The first problem is tha t if more than one value could be considered to 

describe the component, then the suggested assciative tree technique does not work 

because a component may "belong" in several leaves of the tree. The second problem 

lies in the retrieval process. If, for any feature more than one value may be "close" to 

the target value for that feature, then all those subtrees in the index m ust be searched. 

While this can be done, and is actually allowed in traditional cluster theory, within the 

associative network framework the associative tree becomes a relatively unimportant 

part of the whole process. Furthermore, some heuristic to define the notion of 

"closeness" of feature vectors needs to be defined. While several known measures may 

well serve this role, none is identified as being appropriate for the associative tree 

technique.
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6.3.5 Faceted Schema

The faceted schema proposed by [Pri87] and shown in Figure 6.3 is based on the 

assumption th a t collections of reusable components are very large and growing 

continuously, and tha t there are large groups of similar components. As in the 

associative tree index above, the faceted schema requires a set of descriptive (attribute, 

value) pairs th a t describe each software component. A facet is the term  given to these 

attributes. The schema also includes, however, a metric for conceptual distances 

between term s in each facet that is used to help select between closely related 

components.

The classification mechanism proposed by [Pri87], consisting of a six-tuple of 

(attribute,value) pairs, is described in a  previous chapter. The faceted index is 

represented as a conceptual graph th a t m easures the closeness among terms in the 

facet. Nodes in the directed acyclic graph represent general concepts related to the 

software facet. Leaves in the graph are term s for the general concept. Arcs connecting 

the general concepts and the concept term s have a weight assigned to them that 

represents the "closeness" of a concept to a particular term. Unlike the associative tree 

technique, where the closeness metric is left undefined, in the faceted implementation 

the weights relating the closeness of two modules are user-assigned.

One practical application of a closeness measurement occurs during retrieval. If 

a particular term  in am entry does not match any available description in the collection, 

the system tries the next most closely related term to retrieve descriptions of closely 

related items. One major drawback to this technique is tha t constructing conceptual 

graphs for more than a few concepts and terms is very time consuming. However, 

because the conceptual graph allows for synonyms of concepts to be systematically 

accessed, there is no requirement for the terms describing each concept to be 

orthagonal.
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Figure 6.3. A Faceted Schema Index

6.3.6 Classification Matrix

[Mit87] states that software can be classified in two ways:

1. The applications in which they are used.

2. The task they perform.

Applications which are alike, such as accounting programs, can be combined into a 

common application category. Programs which are alike according to the task they 

perform constitute a task category.

In [Mit84] a matrix organization based on these two criteria is suggested for the 

index. Columns in the matrix represent task categories, and rows in the index represent 

application catagories. Each software component in the archive is classified by 

application and task, and the appropriate entry for it is made in the matrix. Candidate 

reusable components are then retrieved by identifying the task and application area 

required, and looking up the components in the matrix.
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This m atrix organization for the index can clearly be viewed as a table, and 

organized into database relations in a relational database system. This is a practical as 

long as the software components can be sufficiently identified by the two stated criteria. 

For large software archives, however, the number of components occupying a bucket in 

the table can become quite large, and searching the buckets no longer practical. To 

address this problem, and to accomodate the classification mechanisms tha t rely on 

more than two classification criteria, n-dimensional matrices will have to be formed 

[Mit87]. However, this organization is non-trivial to implement in a relational system.

6.3.7 Artificial Intelligence Techniques

Recognizing tha t retrieval of software components is a key problem in software 

reusability, some efforts to apply techniques from other fields have been tried. While 

such efforts are only partially related to this research, it is worth recognizing that work 

is currently ongoing in this area. For example, one retrieval technique combines the the 

artificial intelligence [Cha86] and database [Tsi82] concepts of a 

association/generalization [Mit87].

In such a system, "associations" are formed between software modules based on 

whether or not they are similar to each other in some predefined way. The details of 

this similarity metric are not given. However, if there is an association between two 

modules, then they are considered to have a common ancestor a t the next higher level 

of generalization. Candidate components are located by navigating down the 

generalization hierarchy, progressively and interactively refining the requirements of 

the target component until the candidate modules in the database are located.

6.4 Discussion
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6.4.1 Matching Needs with Available Components

In the retrieval strategies discussed above, the common goal of matching a 

high-level, possibly incomplete description of a needed target component with candidate 

modules from the software archive is approached. This issue is a t the crux of the 

reusability problem. Ultimately, the usefullnes of the retrievability strategy is a function 

of the criteria used to specify modules and requirements.

As can be noted from the previous section, the retrieval strategy is dependent on 

many other factors. The first of these comes from the problem of determining the 

amount of resources in the database to dedicate to indices and retrieval algorithms.

When evaluating this decision, the types and frequency of queries and design operations 

must be considered. The desired flexiblity of the retrieval process m ust also be 

determined; some methods will retrieve many related modules for the designer by using 

indices based on conceptual networks, while other methods require a more precise 

definition of the required component and more interaction from the user. Some of these 

dependencies are further discussed below.

6.4.2 Dependencies of the Retrieval Techniques

6.4.2.1 On the Classification Schema

Each of the retrieval techniques discussed above depends in one form or 

another on the method used to classify the software components. The m atrix index, 

for example, presupposed a two dimensional classification schema, whereas most of 

the techniques worked with a n-dimensional vectors of descriptive keywords. It is 

clear th a t some retrieval techniques are not capable of functioning with 

classification mechanisms other than those for which they where designed. It is 

desirable, of course, to employ a retrieval technique that is not only efficient, but 

flexible enough to operate under a variety of conditions.
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6.4.2.2 On the User Interface

The ease and efficiency with which a reusable software component can be 

included in a new application depends in many ways on how the user interacts 

with the CASE system via the interface to the software library. Obviously, an 

interface that helps the user retrieve candidate components based on keywords will 

be quite different from one th a t retrieves components by formal mathematical 

methods.

Methods based on keywords m ay help control the size of the attribute-value 

vocabulary and make data entry easier by providing pull-down menus from which 

values for the keywords may be selected. Text entry boxes and automated 

thesaurus-based assistants are also possible [Arn87, Iso87]. Some interface 

techniques based on artificial intelligence are also being used; the user m ay query 

the database through a natural English dialog with a query processor [Bur8 7]. A 

sample session with such a system  is shown in Figure 6.4.

One interesting approach in system s tha t utilize weighted networks or 

descriptive vectors is to assign the weights to attributes by means of a bar graphs 

[Bur87]. The user indicates which arcs or attributes are most important by 

increasing the "barometric" scale in the bar graph associated with tha t attribute, 

as shown in Figure 6.5.

The key point of the discussion of these dependencies is tha t the retrieval 

method is often very visible to the user of the CASE system through the interface, 

and it is often this interface th a t actually determines the usability of the system. 

Developing a user friendly and practical interface, therefore, is a major concern 

when considering potential methods of software retrieval.
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6.5.1 Introduction

There are two different retrieval techniques that were implemented as part of 

the prototype system. The first of these two options is a linear search on the keywords 

that describe the objects. There is no separate index; the keywords used for the search 

are stored within the data object representing the software module. This method has the 

advantage of saving the space and overhead associated with maintaining a separate 

index, but has the disadvantage in th a t it  is costly in terms of CPU time to extract the 

keyword values from the software objects and then to conduct a linear search on these 

values.

The second retrieval option in the prototype CASE system is based on the 

multilist architecture for database indices. There are several reasons for this. One is 

that the method works well with both of the keyword classification schema that have 

been incorporated into the data model. Another reason is that the multilist indices 

cooperate nicely with the user interface that has been implemented for data entry and 

retrieval. Both of these options are discussed below.

6.5.2 Attribute Search

The attribute search method was implemented for use with the static 

classification schedule and works by extracting the value of a particular attribute out of 

each object in the database, and comparing it with the value that is desired. This is 

effective because the set of keywords is known in advance, and the action is made to 

operate very quickly by pre-programming the set of possible queries. For large 

databases, however, the cost of extracting a given attribute from every object can be 

prohibitive. In such cases it is necessary to follow a heuristic search strategy, or resort 

to an indexing solution such as that used in the multilist technique.

A good heuristic search strategy for this option is to first choose for the first 

search operation the keyword that is most likely to yield a minimal positive result, and
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then to initialize the search on the next keyword in the descriptive vector with the 

result of the last search. 10 This is similar to the strategy used in commercial automated 

library system s, and optimization strategies used in large database systems. This 

speeds up the searching process significantly, and performs best when the first searches 

restrict the search space as much as possible.

6.5.3 Multilist Index

The second of the two options implemented was for use with the variable length 

list classification method. This retrieval technique m aintains a multilist index of all the 

keywords and the modules having those keywords as attributes. This index is 

automatically system generated and maintained, and can be regenerated on command 

[Rov89].

In addition to to the multilist index for keywords, there exists a multilist index 

for each attribute of the module th a t is a potential search key. The group of attribute 

fields tha t are identified as possible search qualifiers and for which currently exist 

multilist indices are:

1. Version

2. Keywords

3. Param eters

4. Designer

5. Interface name

6. Interface tag

7. Alternative name

8. Alternative tag

10 The search for library components is done by string comparison of the target 
attribute value with the candidate attribute values. A technique of searching 
that was insensitive to blanks and case was tried in order to increase hit 
probability, but implementation-specific technical problems were encountered due 
to the fact that ROSE indices are case sensitive.
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9. Performance attributes

There are also indices for the various data types and variables in the design.

The cost in CPU time to m aintain these indices is neglible during the design 

process, since individual modifications can be made cheaply. The cost in term s of 

memory, however, is much greater, as there is a requirement to store the multilists in 

the main memory workspace, and there is no restriction on the size of the indices nor 

the number of indices tha t m ay ultimately exist. However, a t search time the database 

can access the multilist containing the indices of candidate components in one fast 

search operation.

The search strategy for the multilist option is to retrieve the multilists for all 

keywords in the descriptive vector and evaluate them in parallel. The lists are combined 

via a series of join  operations, with the result (if any) giving the addresses of candidate 

components. While the join operation is expensive for large multilists, in practice, this is 

moderated because as the join operations execute, the length of the lists of candidate 

components shrinks rapidly.

Each of the two above options has corresponding advantages and disadvantages. 

The first method is much more flexible in terms of allowing the user to control the 

search on specific attributes; the second method takes more of a "shotgun" approach in 

this regard. The first method avoids the overhead associated with a potentially 

enourmous number of multilist indices; the second avoids the overhead associated with 

extracting the descriptive vectors from the design data and conducting a relatively siow 

linear search on the result. The choice of a final implementation technique depends 

ultimately on whether the major concern is one of space, in which case option 1 is 

prefered, or is one of time, in which case option 2 is preferred.
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It should also be noted that a combination of these two techniques m ay prove to 

be the optimal solution. Such a technique would provide multilist indices for the static 

classification schedule. This option would restrict the number of indices from having no 

upper bound to a total of nine, and be indexing each attribute would save the cost of 

extracting attribute values from the database for every query.
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7. ORGANIZATION OF THE SOFTWARE ARCHIVE

7.1 Introduction

The physical organization of software libraries determines not only the efficiency 

of the CASE system but often also has a direct effect on the user’s view of the software 

development environment. The physical organization of the library is, however, much 

less discussed in the current literature than other reusability issues such as 

classification and retrievability. This is for two basic reasons. First, most research tends 

to concentrate on matching the high level description of the needed target to the 

available components. After this most difficult task is accomplished, the actual, physical 

retrieval of the target component is considered relatively straightforward. Second, the 

organization of a  perm anent archive is a consideration tha t is often not faced until late 

in the process of researching other reusability issues. Most of the current research and 

publications, therefore, have not progressed to the stage where library organization has 

had to be addressed. Nonetheless, careful attention needs to be directed to software 

archive organization so tha t the reusable library can properly supplement the design 

process.

In VLSI CAD, once a part is designed and tested it can be "plugged" into any 

circuit and used as needed. The same should be true for software; programs used in 

different applications should be truly identical. Obviously, this is the ideal case. The 

goal of a CASE system dedicated to reuse should be to have application programs 

consist solely of a sequence of references to the software library. The organization of 

such a library should reflect tha t goal.

The issue of software archive organization is the topic of this chapter. First, 

several candidate library organizations from the literature are discussed. Next, required 

operations on the library based on the library organization and the design process are 

presented. The chapter concludes with an analysis of the library organization

140
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incorporated in the current CASE prototype.

7.2 Organization of Software Libraries

7.2.1 Application-Oriented Organization

Application-oriented libraries are those archives that contain routines dedicated 

to one type of problem, or alternately, group the routines in the library based on the 

type of function they perform.

There are many examples of libraries dedicated to a special class of problems. 

Based on the belief that user interface routines are the most "reusable" of the 

components in their applications, [And88] has a dedicated library of these components. 

Their argument is that by maintaining a consistent "look and feel" to their products by 

means of similar interfaces and screen organizations, their products are more usable 

and easily learned by their customers.

Another approach to application-oriented libraries is given in [Nei84]. Each 

application is thoroughly analyzed by experts in th a t field, and reusable routines are 

written in a domain-specific language. Programs in th a t area of application can then be 

assembled from these routines by writing a problem statem ent in the domain language. 

However, only about 10 or 12 fully usable application domains have been built because 

domain analysis and design is very hard [Nei84]. This technique also has the 

disadvantage that routines in one domain area cannot be applied in another domain 

area. This method, due to the specific nature of the domain analysis process, does not 

apply to this research.

Examples of program libraries organized by the function of the routines are 

likewise numerous. Subroutine libraries, such as for FORTRAN [DeB85], or PASCAL 

[Rug86], are organized in such a manner. Trigometric functions, date/time functions, 

sorting, and searching routines are all grouped by type. This organization is suitable for
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these collections of basic routines for several reasons. First, there are typically a limited 

number of such functions, and each is small and well-enough defined so as to be 

identified by name. Second, the retrieval mechanism for such libraries is often a table of 

contents in a software catalog or user’s manual, where grouping related items into 

chapters is a well-known concept to users. However, for larger libraries, such an index 

is impractical.

By encouraging the use of the programming language Ada, the Defense 

D epartm ent of the United States has also sparked a lot of research in how to best take 

advantage of the software reusability features tha t are part of the language 

[Con87,Gag87,Onu87]. The Ada Software Repository has been created on the Defense 

Data computer Network as a central library for reusable Ada components. The 

Repository is organized by dividing it into several subdirectories which represent topic 

areas. Some of the topics are educational information, software development, graphics, 

and communication message handling. Within the general topic areas, however, little is 

done to further classify the Ada components in the library. This is primarily due to a 

lack of classification schedule; taxonomies for that purpose are currently under 

consideration, with the most likely candidates based on a keyword-style schema 

[Con87].

7.2.2 Organization Based on Retrieval Method

A number of library organizations are dictated by the method of retrieval 

employed by the supporting CASE system. Not all retrieval methods, however, are 

specific as to where the boundary between the physical organization of the library and 

the index to the library is located.

For example, in the category theory work done by [Lit84], he suggests that the 

library of reusable components should be structured to reflect the dependence among the 

associated theory morphisms. He also suggests that the theory morphisms should serve
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as the criteria for selection of components from the library, and that a candidate 

organization for these morphisms is an acyclic graph. Such a graph could be stored in a 

relational database, but he does not specify whether the actual design information, or 

just the name of a operating system file where the information can be found, is to be 

stored in the database.

Likewise, [Iso87] suggests storing the requirements/design schema of his system 

in a network organization. He does not say whether the design data or the actual index 

should be placed in such a network, nor whether the network should be managed in 

main memory by a database or in secondary storage by the operating system. In light 

of this, the remainder of this chapter will assume that the term software archive refers 

to the physical organization of the design data on disk, and not the indices to this 

information.

The retrieval method and archive structure are also both influenced by the type 

of internal organization used in the data files. It is possible to alleviate all questions of 

archive organization by simply storing all of the archive in one file. There exist 

tradeoffs, however, as to the granularity of the file structure and the capacity of the file 

server and the ability of the operating system to manage the files. A common approach 

is to store one design object per file; all the design information contained in the file is 

used when the file is initially read by the database or CASE system [Gog84, Har86]. In 

the context of this chapter, the basic unit in the archive is the operating system file, 

and the information contained in a file corresponds to the design information for one 

software module.

7.2.3 Public Archives and Private Workspaces

Presumably, a lot of programs in the software archive can be reused in different 

applications, sometimes after changing only a few parameters. If the archive is 

organized on an application basis, the search for available components in other parts of
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the archive has a conceptual barrier, even if the actual search for them is physically 

possible. For this reason it is desirable to remove this barrier and allow all available 

routines to mingle, thereby giving them all an equal opportunity to become candidates 

during a search for reusable code.

An additional requirement, however, is to m aintain the integrity of the 

information in the archive. During the extended, conversational transactions typical in a 

design environment, partially modified information in the public archive could corrupt 

other users and routines dependent on those partially completed components. One 

solution is to separate the library into public and private workspaces, and place certain 

constraints on the information in the public workspace [Rov88].

In such an organization, the public archive serves as an repository of approved 

routines, and are read-accesible to client users. However, routines cannot be added to 

this archive unless they are fully tested and approved by the library administrator or 

project manager. The private library, on the other hand, is a local workspace area 

where the individual designer keeps his current project information and partially 

completed code. Access to the private workspace is limited to the owner of the 

workspace; however, if access rights are granted to others it is with the understanding 

that the routines within the workspace m ay not meet the standards required in the 

archive.

A further addition to this organization is a third type of work area, and is 

supported by [Kat86]. Rather than specifically grant access to routines in the private 

workspace to designers requesting such access, a semi-private workspace is created.

The contents of this workspace is read-accessible by members of the group working with 

the owner of that workspace. This organization, while adding some complexity to the 

archiving process of the CASE system, has the advantage tha t it provides an explicit 

location for common code to be shared in a distributed environment while further
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modifications to other versions of the code are being made.

The separation of software libraries into public, private, and possibly 

semi-private workspaces has an added advantage in th a t the organization is 

immediately transferable to a distributed database and design network. Since many 

CAD system s operate on private workstations that are networked to a central 

computer, all of the personnel working on a large project can easily port and maintain 

there private workspaces on their personal machines, leaving the public archive on the 

central computer for all to access. Given tha t this is a  common situation in CAD and 

CASE environments, it is a desirable feature in software library organization.

7.3 Operations on the Software Archive

The intent of the software archive is, of course, to provide a common repository 

of approved routines for general use. As such, the archive m ust provide read access to 

those approved for its use. However, in addition to simply adding new routines to the 

archive, there m ust exist a set of operations based on the semantics or constraints that 

the library administrator wishes to enforce in the archive.

The first such constraint is on the type of routines tha t are allowed in the 

library. A realistic constraint in this case is only to allow approved and tested routines 

to be archived. Therefore, before a routine may undergo a write to the library, it must 

pass a formal testing, inspection, documentation, and approval process. Such a process 

may be p a rt of the software engineering methodology employed a t the site or made a 

function of the database.

Another constraint might be on whether or not to delete past versions of an 

object. Considerations are the preservation of disk space versus keeping past releases of 

code for maintenance, documentation, or legal reasons. While methods of economically 

storing versions, such as the "delta" method of the UNIX SCCS [SUN86] are viable 

options, the issue of deleting old versions m ust be addressed.
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Should deletion be allowed, further constraints m ust be considered. Deletion 

should not be allowed for components tha t have dependencies that may propogate 

throughout the library. For example, if Routine A is used by another Routine B, this 

dependency should be removed before Routine A may be deleted. The maintenance of 

these constraints is the responsibility of the library administrator.

7.4 Organization of Implementation Archive

The software archive in the prototype CASE system is organized by the type of 

objects used in the IDM model. I t  is further divided into public and private libraries in 

order to fully support conversational transactions, distibuted design environments, and 

database integrity as discussed above.

The software archive is a  public directory consisting of four sub-directories; a 

directory for calls, one for interfaces, one for alternatives, and one for data. The 

separate directory for data exists for efficiency of queries about the use of variables and 

parameters. There is also a local workspace in the user’s directory that contains a 

directory for each design currently under development. Each of these local design 

directories is divided, like the public archive, into directories for each object in the IDM. 

This allows the designer to freely develop his designs without concern for side effects 

caused by changes to the archive.

Operations on the public library are limited. Because it is desirable to retain old 

code for documentation purposes, deletion of objects is restricted. In keeping with the 

semantic constraint that all components in the public archive m ust be validated and 

tested, write access is restricted to approved objects. Operations on the private 

workspace, however, are quite liberal. By using "hooks" from ROSE to the VMS 

operating system, entire directories and subdirectories representing designs and 

subdesigns are created, updated, and destroyed a t the designer’s option.
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When the designer has completed the work on a design or sub-design in his local 

workspace, and the work has been tested and approved, the work is archived in the 

public library. In order to limit side effects of any actions to other modules, 

modifications to the archive are limited. In term s of interfaces, the names of new 

alternative implementations may be added. In term s of alternatives, entire new 

alternative implementations m ay be specified. Calls are always unique and are added or 

updated as necessary in the archive. The only exception to these rules is that the 

version of an alternative that is to be considered "current" may be redesignated.

In keeping with the operation of the ROSE database system, each design object 

is stored as an operating system file. This is practical and efficient because the size of 

the data objects has been carefully designed to correspond to the size of an operating 

system file. The indices for the design objects in the database become the names of the 

operating system files where they are stored. Interfaces are accessed by name, 

alternatives are accessed by the two-tuple (interface name, alternative name). Calls and 

data objects are accessed by a  system generated surrogate identifier. Finally, while the 

operating system performs the actual manipulation of the disk files, all database 

activities are performed by ROSE, thereby m aintaining the speed of the CASE system.

In a commercial implementation of this system, it is anticipated that the public 

archive will be located on a central computer th a t hosts several workstations or design 

terminals. Each of the private workspaces will be located either in private account 

directories or on the private workstations. Supporting distributed design environments is 

a significant feature of this library organization.

When the program design is complete, the modules that comprise the design are 

added to the database as individual design objects. Once entered into the database, each 

module becomes a perm anent retrievable resource. Executing a program consists of 

making a reference to the appropriate component. That component, in turn, calls the
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required subcomponents. This organization is close to realizing the goal of having 

programs consist only as a sequence of references to the software archive.
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8. IMPLEMENTATION OF THE IDM

8.1 Introduction

In order to validate the ideas set forth in this thesis a prototype CASE system 

has been developed. This prototype CASE system is based on the IDM and is serving 

an invaluable role by identifying and clarifying m any important issues about design 

data management and software reuse.

The prototype is implemented on a VAXstation in the Center for Interactive 

Graphics (CICG), and runs the VMS operating system with the UIS graphics package. 

The CASE system makes heavy use of the graphics and multi-processing capabilities of 

the workstation through the ROSE User Interface to UIS (RUF), with almost all input 

asynchronously driven (AST) by a mouse.

The prototype CASE system includes graphical design editors for displaying 

program flow of control and program declarations. The library search functions for the 

software archive are also implemented. In addition, a great many user interface issues 

were encountered and addressed; a full discussion of these is found in an appendix.

8.2 About the System

The prototype system divides the workstation screen into several regions which 

are consistently used for the same set of functions. These regions are depicted in Figure

8.1 and are described below.

1. This region is for the main menu bar. This bar is always present on the screen

and provides access (via pull-down menus) to the most general functions provided 

by the CASE System. The first two of these functions are access to the design 

library and the local workspace of the designer. Next are debugging and toolkit 

development operators for use of the ROSE database system in the interactive 

mode. There are also a full set of predefined queries about the system. Finally,

149
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Figure 8.1. Screen Organization of the CASE Tool

there is a standard set of menus for managing the editing windows, with operators 

for resizing and moving windows, and operators for panning and zooming within 

the windows. Special variants of the some of these are also provided, such as 

centering on an object and a pan-to-home function.

2. This region contains the program dynamic structure (PDS) editor. It provides the 

ability to describe the flow o f program control in an enhanced type of structure 

diagram as originaly proposed by [Mye78] and [You 7 5]. The enhancements allow 

for the pseudocode constructs of sequence, selection, and iteration as explained in 

[Pou88b] and in chapter 4. This is the primary editor for interactive design in the 

prototype.

3. This is a function "palette" providing the operations for the PDS editor.

4. This region contains an IPO-style chart. A full discussion of this chart is given in 

the appendix; in short, it allows the user to view the attributes of a module "on 

one piece of paper."

5. This is a dialogue box. It is used to output messages and prompts to the user.

6. This is the Program Static Structure (PSS) editor. This provides a top-down

depiction in tree form of how the modules in the program are declared. For the
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purpose of this editor, a  module is considered to be an interface and the alternative 

for that interface that is being considered for use in the current design. The intent 

is to show and enforce scope constraints in the design. Operations in this window 

are provided by a pull-down menu.

8.3 A Sample Design Session

8.3.1 Introduction

Here we see how the program designer uses the CASE system to locate existing 

code to perform a required sort of an integer array . This section seeks to illustrate how 

the IDM and the software library support the interactive design process by showing 

how they work together in the CASE system. To do this, a brief overview of the process 

is first given. This is followed by a more detailed walk-through of a short design 

session.

8.3.2 Overview of the Design Process

A detailed version of the design process is given in the following section; this 

synopsis is only an introduction to the philosophy behind IDM and software reuse.

When the program designer encounters a need for some service in a program, 

he meets that need by calling a subroutine or function. Using the terminology of the 

IDM, he creates an instance of a call. This call represents an abstract request for 

service. In further defining this call, the supporting CASE system provides tools that 

help locate pre-defined interfaces existing in a  library of software components that may 

meet the software requirement. The tools in the CASE system also help the designer 

locate alternative implementations for specific interfaces. The designer has the option of 

whether to actually use the library components in his application or to design his own.

If he chooses to use the library component, he is said to bind that component to the call. 

He may also make new interface and alternative objects by copying the library routines
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and then modifying the new objects in order to customize them for his own application.

In any case, the call remains a non-binding request for service independent of the 

actions the designer has made.

8.4 The D esign Session

In this sample design session, the designer chooses to s ta r t the design process 

by making all of the tools visible and accessible. (Since in this example we are only 

seeking one component, none of these tools are strictly necessary, and all work could be 

done by simply browsing the library. However, this section also seeks to show how the 

tools in the CASE system work together throughout program development.) At this 

point the workstation screen appears as in Figure 8.2.

The designer starts by adding a call icon to the PDS editor by clicking on the 

Add Call icon in the Dynamic Editing palette. By doing this ail he has done is stated 

tha t he has some undefined software requirement. The PDS editor now draws the 

undefined call icon on the screen, as shown in Figure 8.3.

In order to define the call and simultaneously search for existing components that 

meet the need of the call, the designer invokes Edit Call . The "Search/Create 

Calls/Interfaces" text entry box is now displayed and activated. This box is shown in 

Figure 8.4. Since m any of the concepts critical to the IDM are implemented as functions 

from this box, it is worth explaining the m any options available a t this time.

The reason why this box is so critical, and the title of the box is so long, is that 

all of the library search functions, the copying functions, and the creation of interfaces, 

are all done from here. This box also launches the designer into searches for alternative 

implementations of an interface, as will be seen below.

The evolution of a software requirem ent and the reuse of software components 

is the philosophy of IDM and is the underlying motivation while working in this box. As 

the designer defines his call, he also searches for interfaces tha t meet or partially meet
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Figure 8.2. The Development Tools in the CASE Prototype

the requirements he is defining. He does this by comparing the entries he makes for the 

call, which are viewed as constraints, against the corresponding entries in the library of 

module interfaces, which are considered definitions of available components. The 

designer s tarts  (or restarts) his search by selecting the Search icon. The single letter 

icon S next to each attribute box invokes a search on all interfaces over tha t attribute. 

The results of this search are used to initialize the next search, or if the result is zero, 

the last search result (LSR) is automatically retained. The designer may also backup by 

manually selecting L ast R esult. He may scan through the interfaces found in the last
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search by using the Brow se LSR  option; interfaces will appear on the IPO chart. Of 

course, if at any time the designer needs an explanation of these operations, there is 

assistance provided by Help, and if he needs suggestions for search keys for any 

particular attribute he may select the single letter H  next to th a t attribute.

To illustrate the search facility, we pick up the design after several entries have

been made. The designer names the call "Sort an integer array" with "I Sort?" as

it’s short name, or tag. He also has filled some other administrative information. He has 

selected Search to initialize the search for interfaces th a t might sort an integer array. 

Right now the search space contains all the interfaces in the software library. He then 

makes the entry "Sort" in the Function box for the call and clicks S as shown in Figure 

8.5. The dialogue box advises him:

There were 4 interfaces with that function.

Encouraged, he requests help on interface inputs and clicks the H next to the 

"Input" box. The dialogue box advises him that the four interfaces found in the last
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search have the inputs:

Real Array 

Integer Array 

Linked List 

Matrix

Since "Integer Array" most closely matches his need, the designer makes tha t entry in 

the "Input" box, and clicks S. The system advises him that there is only one interface 

in the library that has tha t input (and is a sort function). He displays this interface on 

the IPO chart by clicking B row se LSR, as is shown in Figure 8.6. Note tha t because 

no alternative has yet been specified, this part of the IPO chart is left blank. The 

designer may also view the param eters and names of existing alternatives for the
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Figure 8.5. Searching for a Sort Function

interface by clicking on the appropriate icons on the IPO chart. The results are listed in 

the dialogue box.

At this point, the designer has several options. He may elect to copy the 

interface information ( Copy )for the integer array  sort into the call he is editing. If he 

chooses to do this he finishes defining the call, by giving the call the attributes of the 

interface that was found. This would also allow him to edit the call information and 

param eters any way he likes, and then later make a new, custom interface for his 

application (using Make Int). Furthermore, he could bind the interface to the call using 

Bind, thereby telling the system that all future references to this call should 

automatically reference this interface. This action would be reflected in the PDS editor 

by replacing the call icon with an interface icon, as shown in Figure 8.7. The key point
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is the designer m ay define as little or as much as he likes, knowing tha t the call will 

remember the definitions and also allow any future modifications should he change his 

mind. In our case the designer elects to investigate alternatives for this interface and 

invokes A lterna tives, resulting in the tool shown in Figure 8.8.

Since this box looks and operates in a manner similar to the box for calls and 

interfaces, a detailed explanation here is spared. The designer is satisfied with the

"Quick Sort Method" alternative of the "Integer Array Sort," and now scans the

versions of this alternative using V ersions. Here he has the option of viewing the 

history and pseudocode of each version and selecting one to be a current version. The 

tool for these actions is shown in Figure 8.9. Note that this step is also not necessary,
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and if skipped will result in the version now identified as the current version to be used 

in the application. Also note tha t in the future a large variety of documentation 

schemas will be provided to document the actions of the version.

To complete this example, the designer has clicked Bind, IPO Call, and has 

exited back to the PDS editor. This combination of actions is reflected in Figures 8.10 

and 8.11. Note tha t once the interface and alternative for this module have been added 

to the design, the Program Static Structure editor automatically updates itself, as 

shown in Figure 8.12.

What the designer has successfully done is to interactively develop a 

requirement for a  software service into a  completely defined piece of code using existing 

components from a reusable software library. The IDM is central to his ability to do 

this. It allows him the ability to evolve an idea without having to be exact, secure with 

the knowledge that he can define as little or as much as he likes, with the ability to
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change the requirements a t any time without any penalty. The prototype 

implementation of this philosophy is demonstrating that the IDM and software library
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provide a viable method for supporting reuse and software design in a CASE system.
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9. EVALUATION OF THE IDM

9.1 The IDM as a Partial Solution to Reusability in CASE

The IDM addresses several design object modeling problems that current 

conventional and CAD data models fail to address. The first of these is the ability to 

"see" inside implementations of design objects; in traditional object-oriented 

programming this is not permitted. However, in order for a designer to use a module 

with confidence, some of this information must be accessible. This is an important 

philosophical addition to an object-oriented world.

By dividing the molecular interface into a requirements and a definition portion, 

the IDM permits a level of flexibility during the design process tha t is not possible with 

the molecular model. Since molecular interfaces define modules, they cannot be 

modified, thereby unnecessarily tying the designer’s hands as he seeks to develop his 

program. However, the IDM is intended for just this type of interactive, dynamic 

approach, and allows requirement specifications to grow as the project grows.

Unlike other CAD data models, the IDM provides support for all stages of the 

software engineering lifecycle. This is possible a t high levels of design and during 

product maintenance because the IDM inherently stores requirement specifications as 

part of the model. At the middle stages of design, the three IDM constructs reflect 

software modules and how they interact, both from a control flow and a declaration 

viewpoint. At the code level, the language-independent pseudocode representation 

reflects the source code constructs tha t are required in any structured programming 

language.

Finally, no solution as simple as a semantic model for design data will solve all 

of the problems of software engineering and CASE. The IDM seeks only to make a 

small step towards more efficient software development and the production of a higher 

quality software product. No panacea or greater claim is made. However, it is strongly

162
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believed that in those areas of software engineering that the IDM addresses, the IDM 

does an exceptional job in meeting those tasks.

Due to the lack of a numerical evaluation method for comparing software 

engineering processes, this kind of evaluation of the IDM is not provided. While every 

attem pt at objectivity is maintained, a  mathematical approach to evaluation of this 

research is not possible due to the difficulty in quantifying software engineering results 

[Duf89], The same is true when comparing the IDM with current CAD data models.

For this reason, any evaluation of this type of research will contain a significant 

subjective element.

An extensive review of research done in the fields of data modeling, software 

engineering, and database techniques has shown that other authors are often faced with 

this same lack of a quantitative evaluation method. The approach commonly taken is to 

undertake a thorough discussion of the advantages and disadvantages of the new 

technique. For this reason, this chapter uses this approach. First, the major issue of 

semantic storage of design data is discussed. Next, the issues of design capture, data 

classification, component retrieval, and software library organization are presented. In 

each case, the strengths and weaknesses of the new EDM’s approaches are forwarded.

9.2 Storage of Design Data

9.2.1 Advantages

Until recently, the dominant tendency in database systems has been to work 

with available techniques and to ignore data semantics, although the object-based 

technologies and particularly the object-oriented technologies have attempted to close the 

semantic gap beteeen data and reality. Most of the software-oriented database work has 

been based on models that can be viewed as simple extensions of the relational and 

entity-relationship models. The inadequacy of these models for software design support
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has been broadly acknowledged [Bat84, Has82, Hel87, Sid80, Web88].

The IDM takes the object-oriented approach to data modeling, adding a set of 

semantic rules that mirror the software product tha t is being created. Unlike other data 

models, the IDM grants the designer a  great amount of flexibility during the design 

process by providing a place for the evolution of product requirements and constraints. 

These requirements and constraints are stored as p a rt of the IDM, thereby providing a 

record of the software development process for documentation purposes as well as 

providing a means through which to retrieve candidate components for reuse.

The storage model has good performance expectations for large-scale systems. 

Each object in the IDM is relatively small, allowing it to be manipulated by the 

database system and the operating system with a mimimum of operations and disk 

accesses. This is in keeping with the ROSE philosophy in the performance optimizations 

of an object-oriented database system [Har87a]. Furthermore, the boundary of each 

object in the IDM is well-defined. Retrieval of one design object does not require the 

automatic retrieval of all objects referenced by it; this action is postponed until 

specifically required. This prevents a proliferation of I/O requests for relatively minor 

operations.

9.2.2 Disadvantages

The primary drawback to this model centers on the semantics regarding the 

modification of existing interfaces. The valid operations on the model do not include the 

ability to edit an interface once it has been created. This is because changing the 

definition of a module invalidates the implementations of the module, and compromises 

all places where that module might be used. This is traditionally a major concern in 

database systems. In the IDM, object integrity is guaranteed by preventing such an 

action altogether. The process required to modify an existing interface is to copy the old 

interface into a new call object, and then to edit the call as desired. At this point, the
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new call may be made into an interface object, or saved as a call object for even further 

modification a t a later time. However, this is not so much a disadvantage as it is an 

inconvenience.

The positive side of this restriction on the user’s modification of interfaces is 

tha t the process explicitly requires the designer to ensure that no type conflicts are 

created by his action. In fact, no type conflict can arise. Now consider the case where a 

routine th a t is currently in use throughout a design requires a change to its interface. 

The semantics of the IDM prevent modification of the interface because the 

consequences of such a change made uniformly in so m any locations cannot be 

predicted. However, design engineers are often much less concerned about immediate 

integrity constraints, and may wish to do exactly this kind of universal modification. If 

this is the intention of the designer, he can proceed in the following fashion: First, 

construct the new interface according to the semantics of the IDM, as described in 

Chapter 3. Second, retrieve all call objects in the database tha t have the old interface

bound to them. Finally, set the Bound int fields of these call objects to the new

interface name.

A variation of this situation is discussed in Appendix II, Section 15.2.1. It is 

im portant to note that the prototype implementation strictly implements the valid IDM 

operations as described in Chapter 3 and in Appendix II. Without entering the ROSE 

database system in the interpretive mode, it is impossible to operate on a program 

design other than in a semantically approved fashion. Note th a t in the situation 

described in the appendix, the prototype implementation is based on a design decision 

tha t is model independent. In order to circumvent the "inconvenience" tha t this 

disadvantage creates, a commercial implementation of a CASE system based on this 

model m ight add a replace operation to the valid operations on interfaces. Once again, 

this is a design decision based on database concerns and not engineering practice.
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Finally, the IDM was developed with a heavy orientation towards structured 

programming and the major software engineering methodologies, all of which support 

structured programming. The data model is not intended for the design of parrallel 

computing algorithms, concurrent computing algorithms, non-sequential imbedded 

systems controllers, and object-oriented programming with methods, such as in 

Smalltalk.

9.3 Capture of Design Data

9.3.1 Advantages

The method developed for data capture with the IDM is a  direct reflection of the 

major top-down, structured programming methodologies as well as the semantic objects 

that comprise the IDM. In the Program Dynamic Structure editor, the system 

incorporates a "who-calls-who" orientation in a  tree-style format tha t quickly shows 

control flow dependencies. In the Program Static Structure editor, the system further 

shows the declaration scheme of the program, and is useful for answering questions 

about scoping rules.

In addition to these kinds of information, the various IDM icon shapes and the 

spatial relationships between the icons provide a very fast and effective method for 

conveying the status of the program design. A quick glance a t the diagram reveals 

which software requests are currently unsatisfied, and which modules are currently 

undeclared. This desirable characteristic is an attribute of visually deep diagramming 

methods.

The PDS and PSS diagrams not only provide a methodology for software design 

that m atches the design process, but they also provide a tool tha t is flexible enough for 

use throughout the software lifecycle. The abstract representation of a 

request-for-service that exists in the call is suitable for the development of product
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requirements, whereas the pseudocode representation of the code statem ents present in 

the alternative object relieve the model of any language dependence.

An additional problem with classical representation schemes is that they tend to 

promote understanding and communication among the development team up to the 

implementation stage of a project, but a t th a t time ail the design information is 

effectively discarded. This is the result of the unfortunate consequence that there is, for 

the most part, currently no way to integrate design information with the code, or to 

otherwise effectively maintain, manage, or reuse it. Moreover, the fact remains tha t 

many large, complex computer system s have been designed without any specific 

methodology to guide the software development process [Web88].

The IDM eliminates this problem in a natural way. The model is by itself a 

direct reflection of the PDS and PSS design diagrams th a t created it. The design 

documentation is therefore always available. The model also has provisions for 

incorporating other documentation data  into the object schema, so it is possible for other 

types of diagram s to be included in the database for design or documentation purposes.

Large scale systems can be visually represented in a satisfying m anner through 

the abstraction and generalization mechanisms built into the diagram editors. The 

abstraction of a part of a design results in the hiding of unnecessary clutter and detail, 

and increases the response time of most global operations by restricting the traversal of 

the diagram to unabstracted objects. Generalization of all or a portion of the diagram 

reverses the abstraction operation, thereby revealing the details of a design. This 

concept is further developed in the section "Economy of Scale," below.

9.3.2 Disadvantages

As with any design tool tha t is forced to use a finite space to represent large 

designs, there are problems concerning the amount of information and detail th a t can be 

usefully displayed at one time. While window resizing, zooming, panning, and the



www.manaraa.com

168

abstraction and generalization operations help in this regard, the PDS and PSS 

diagrams do not entirely solve this problem.

There are several features th a t could be added to the PDS diagram in the 

future. The most notable of these is to enhance the diagram with a visual indication of 

the suitability of a call and the objects th a t are bound to it. For example, if the interface 

currently bound to the call only partially satisfies the constraints of the call, this should 

be expressed in the diagram. The visual indicator should also indicate, at a glance, the 

level of conflict currently existing between the call and bound objects. In this way, 

bound objects violating five constraints would be stressed over those violating only one 

constraint.

Furthermore, the design diagrams only provide a limited bottom-up design 

capability. This is because of the dichotomy the reusability problem creates with 

top-down programming advocates. The top-down designers suggest that all 

programming problems should be progressively subdivided until the problems become so 

small that they can be easily performed by one software module. The idea of 

reusability, however, is to incorporate as much existing code as possible into the design 

in order to increase productivity and decrease effort. This is inherently a bottom-up 

activity. The issue becomes one of deciding at w hat point the top-downers should s ta r t 

making design decisions based on the availability of reusable components, and of how 

much the bottom-uppers should force existing parts into a design. Although both 

methods are supported by the IDM and the graphical tools, the strength of the model is 

in supporting a top-down approach to programming.

Perhaps the greatest criticism of the PDS diagram is that is fails to remove the 

designer from the semantic structure of the database, which is a drawback for those 

unfamiliar with data modeling concepts and/or database systems. The intention is to 

forward a design method based on the IDM that has a high emphasis on reuse.
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However, the graphical tools should be as general as possible in order to appeal to those 

unaccustomed to the technique or who do not wish to learn it. This problem can be 

partly addressed by integrating other design methods into the system.

9.4 Classification of Software Components

9.4.1 Advantages

While there are many classification techniques currently in use and under study 

for various kinds of libraries, there is significant difficulty surrounding the classification 

of objects that are as abstract as software. The m ainstream  in research and the 

tendency in application systems is to classify reusable software components using some 

form of descriptive vector that is composed of a finite set of keywords. The length of 

this vector can be fixed or of any length.

The IDM has been shown to fully support these keyword classification schema 

and do so efficiently. By storing the classification criteria in the IDM objects, no 

additional overhead is required in the library system beyond the m anagement of the 

design objects themselves.

9.4.2 Disadvantages

The use of a keyword based schema for the classification of software has been 

fully addressed in Chapter 5. The largest problem with these methods is the lack of 

precision; the choice of keywords and their attributes is a subjective decision made by 

the designer or librarian. Part of this problem is due to the abstract nature of the 

design objects, but part of the problem is due to the manual method of selecting 

keywords and their values. Incorporating an automatic or machine-assisted tool to 

classify the objects might result in more precise definitions.

The most common tool for this purpose that has proven to be very effective in a 

CASE system is a thesaurus or "valid word" list [Fra87, Iso87]. The lack of such a
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thesaurus in the EDM prototype makes it difficult for a designer to find objects that 

have been classified with similar, but not compatible keywords. The lack of this tool also 

increases the number of similar values that an attribute might contain, making 

searches more difficult from a designer’s point of view and less efficient from a 

database point of view. Some form of vocabulary control mechanism is clearly needed.

9.5 Retrieval of Software Components

9.5.1 Advantages

Matching vague and abstract requirement statem ents to those components in a 

reusable software library tha t are able to fill those needs is one of the most challenging 

aspects of software reuse. Any retrieval technique m ust use all of the information 

available to it, such as param eter lists and module performance attributes. However, in 

order to do this, the technique is dependent on the method used to store and classify the 

design data. In the IDM, the product requirements and constraints are stored in the 

call, where they can be modified, developed, and saved. These requirements are later 

matched by a retrieval algorithm with interfaces and alternatives that have the same 

values for corresponding attributes.

There have been two retrieval algorithms implemented as part of this research. 

These methods involve accessing the keywords in the object classification schema and 

comparing their values against those in the software requirements. The prim ary 

difference between the two techniques is the use of multilist indices in one of the 

methods in order to provide faster access to large data sets. These indices are external 

to the model and are independent of the IDM. Both methods, however, demonstrate that 

the IDM is capable of supporting an effective retrieval mechanism in a CASE system. 

Furtherm ore, by creating and maintaining multilist indices for search keys, the model is 

capable of supporting large-scale queries a t relational database speeds. I t  is believed
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that this can be a tremendous asset in an industrial strength version of a  CASE system 

based on the IDM.

9.5.2 Disadvantages

The issue of design object retrieval is by itself a major research topic, critical to 

the reuse problem. In many ways it is the most important of the reusability issues, 

because in one way or another retrieval depends on all of the other issues; on how the 

information is presented to the user, how the information is classified, and how it is 

stored, both in the immediate database workspace and in longer term  public libraries.

The retrieval techniques used with the IDM are database standards, but lack 

extensive heuristics that might be found with a  knowledge-based search assistant or 

more "intelligent" system. The use of these advanced searching concepts could greatly 

increase the response and usefulness of a CASE system. Although it is not possible to 

predict performance improvements, even the incorporation of a thesaurus as discussed 

above could make object retrieval significantly more efficient.

An additional shortcoming and possible enhancement to the current retrieval 

algorithm would be to incorporate a partial matching mechanism for automatically 

retrieving those objects that meet a subset of the call’s constraints. The retrieved objects 

could then be ranked in order of their suitability. Currently, the implemented retrieval 

algorithm finds only those objects that m eet all the call constraints. As above, such an 

enhancement would make object retrieval a more intelligent and user-friendly process.

9.6 Organization of the Software Archive

9.6.1 Advantages

The design objects in the archive represent all of the complete and functional 

software components developed to date. While these objects are related through 

references known as calls, from an external viewpoint the archive is comprised of a
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collection of "equal opportunity" components. There is no boundary, physical or 

conceptual, th a t prevents the selection of any component. This means tha t a component 

tha t might have been developed for a totally unrelated application has the same chance 

of being accessed as any other component while the designer is conducting a  search for 

reusable modules.

The IDM software library is not only divided by object type, but also into a 

public archive and a private workspace. The public archive contains approved and active 

design objects, while the private area contains modules under development. This division 

of the software library has several advantages. First, by separating the modules under 

development from those in active use, the integrity of the data  in the public archive is 

guaranteed. Second, this division is readily adaptable for use in a distributed design 

environment. Not only is this the most common form of CASE environment, but is 

particularly advantageous when developing large scale software systems where 

hundreds and perhaps thousands of programmers are involved in the design and/or 

maintenance of a program.

9.6.2 Disadvantages

The organization of the public and private workspaces assumes that the host 

operating system  has no practical upper limit on the number of files that can be 

maintained in a file system directory. As designs grow, and especially as the public 

archive grows, the number of files in these directories can become enourmous. The 

library organization and the database depend on the operating system to manage this 

potential growth.

9.6.3 Economy of Scale

One major concern in any CASE system m ust be how the system will perform 

when extremely large quantities of information are being accessed and manipulated.
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Specifically, will the system response time unacceptably deteriorate? The organization of 

the prototype library allows a heuristic that is aimed a t keeping system response times 

fast.

This heuristic is to keep the contents of main memory to a bare minimum. The 

strategy is to have something in memory only i f  absolutely necessary. Normally, when 

designing a large system, the user will only work on a small part of the actual design. 

With the EDM library organization, only this small part of the design will exist in 

memory; the rest remains in secondary storage until needed. The designer can save this 

small part in his workspace and recall it a t will. He m ay also request that other parts 

of the design be loaded, either explicitly (by name) or automatically (by navigating the 

structures in the PSS and PDS editors). When a call, interface, or alternative object is 

required for the first time, it is read from disk. Using this strategy, the amount of 

information typically in active use will be restricted to dozens of objects rather than 

thousands, with a corresponding speedup in response time. This strategy is termed the 

economy of scale, and is possible through this library organization by direct access and 

retrieval of the required object in the appropriate directory.

9.6.4 Levels of Abstraction

An additional feature which is possible primarily because of this library 

organization centers on the desire to view the program from multiple levels of 

abstraction [Rov88]. A high level of abstraction is to view a program as if it were just 

an interface or a call, without considering the subroutines it uses to implement the 

action. For example, in the prototype CASE system, abstracting a node in either of the 

two tree diagrams has the effect of hiding the children (and grandchildren, recursively) 

from view. In contrast, a low level of abstraction is to see how the module does it’s job, 

in other words, who it calls and who it declares. In the CASE system, decomposing a 

node in one of the tree diagrams causes the immediate children of that node to be
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displayed. If the information about these nodes is not in memory, it is first read from 

secondary storage.

This feature has several advantages. First, and most importantly, it supports 

the EDM, molecular object, and object-oriented concepts of viewing modules in a 

black-box and in a white-box fashion. The second advantage is th a t it supports the 

top-down structured design methodology. And finally, in keeping with the above stategy 

of "economy of scale," it keeps the CASE system performing a t optimal efficiency. By 

organizing the library by object type, and storing the objects by prim ary key index, 

these object can remain in the archive on secondary storage until needed, and yet still 

be located at main memory speeds.
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10.1 Design Data Management in CASE Systems

There has been a lot of interest in database system support for the software 

development life-cycle [Blu87, Bro87, Cam83, Day83, M at87, MHS86, 01u83, Onu87]. 

Most of the articles addressing this issue give extensive consideration to the 

requirements for a CASE system, but do not explore detailed solutions to these 

requirements [Ber87, Nes86, Rom87, Sid80, Yau87]. The following paragraphs provide 

a sum m ary of recent work in this area.

Numerous commercial system s are currently available through CASE vendors 

[Dig88, Bal85]. These products can be grouped into four categories, depending on the 

amount of support they provide to the software engineering process. The first group 

allows the designer to design a program using one or several of the major diagramming 

techniques for design. They incorporate some semantic checking of the diagrams tha t 

have been created, but are little more than customized drawing routines [Rou83]. The 

second, smaller, group advertises some level of semantic checking and data dictionary 

support of the diagrams tha t have been created. This group typically uses a database to 

manage the design data, and this database is almost always relational [Cad87, G1L86, 

Gut82, EDE87, Was87]. The third group, which comprises only a few products, adds to 

the functionality of the second group by producing pseudocode skeletons from the design 

diagrams, or some other form of output that may be useful to later stages in the design 

process. The final group is made up of highly specialized products, such as those tha t 

automatically generate "structured COBOL" programs from unstructured ones, and 

therefore are outside the scope of this work.

Many of the applications related to software development opt to use an abstract 

syntax tree representation of the program to manage the design data [Alb84, ReS85]. 

There are several advantages to this. First, there is nearly a one-to-one mapping
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between this representation and code, so automatic code generation is generally possible. 

Second, incremental parsing of the program design is possible after nearly every syntax 

change. However, databases are not employed to support abstract syntax trees, as it is 

considered much more efficient to use linked-lists of records to simulate the tree 

[Pow83], or alternately, to use the list management facilities in LISP [GE87]. However, 

because the data structure so closely models the Backus-Naur description of the 

programming language, this class of systems is generally oriented a t and limited to 

low-level design and program development.

10.2 Existing Systems for CASE

10.2.1 Introduction

Not only has there been an intense research effort in CASE, but a strong 

commercial interest as well. From a business perspective, a company that is paying a 

program mer a fairly substantial salary every year is making a sound investment in any 

product th a t has the potential to multiply his productivity. For this reason there are 

numerous CASE packages available on the market and described in technical literature. 

Journals such as IEEE Software commonly carry advertisements for CASE systems 

th a t specialize in areas ranging from source code version m anagement to graphical 

design. In place of a survey of the state of the a rt in this area, I describe several 

representative systems below.

10.2.2 Software Through Pictures

Interactive Development Environments (IDE) is a company founded by a pioneer 

of this field, Anthony Wasserman. IDE m arkets the Software through Pictures system, 

which supplies editors for data flow, program structure, data  structure, entity 

relationship and transition (finite state machine) diagrams. The system runs on several 

major workstations and uses a relational database for data management. It is
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advertised as being flexible and easily extendible for custom situations, as a result of 

it’s "open architecture" design. An example of an IDE editing window is shown in 

Figure 10.1.

Although the IDE system  provides numerous graphical editing capabilities, any 

one p a rt of the target program can be designed using only one of the views. Several 

schemes may complement each other, however, such as a text description of a module 

designed with the data flow editor. Each part of the overall program design is stored in 

it’s own database relation, and consistency checks with the rest of the program are done 

a t the express order of the designer. IDE is a "high level" tool aimed more a t 

programming in the large and does not provide a means to work directly with source 

code [IDE 8 7].

10.2.3 Pecan

The Pecan family of program development system s is the research product of 

Steven Reiss a t Brown University. It is, in contrast to Software through Pictures, a low 

level design and programming environment. Therefore the graphical tools provided are 

more code-oriented; Pecan supports standard flow charts, Nassi-Schneiderman 

diagrams, a structure chart, and a syntax tree representation. The latter is due to the 

representation of the program internal to Pecan. There is no database supporting the 

design. Rather, the program is stored as an abstract syntax tree. This allows for much 

more syntax directed checking, as well as incremental parsing of the code. Pecan also 

includes a text editor for source code and run-time facilities for visual program 

debugging are provided [Reis85].

10.2.4 Interactive Ada Workstation

The Interactive Ada Workstation is under development at the GE research and 

development center in Schenectady, New York, for the U.S. Department of Defense.
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Figure 10.1. IDE Data Flow Editor

The prim ary high level tool that the Workstation supports is the Buhr diagram, which 

is a diagramming convention developed specifically for the Ada language and has the 

ability to represent concurrent Ada tasks. The Workstation supports or will support 

several low level design tools including a finite state machine editor, decision table 

editor, tru th  tables (a special case of the decision table) and Nassi-Schneiderman 

diagrams. The Workstation was programmed in LISP and uses that language’s resident 

list processing facilities instead of a database to manage the design data. The internal 

representation of the design is, like the Pecan system, a syntax tree. The Workstation 

allows the programmer to edit source text and run Ada programs. It supports 

incremental compilation and can automatically generate code from diagrams such as the 

finite state machine [GE87],
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10.3 Semantic Data Models for Design Data

10.3.1 For CAD/CAM

There is no shortage of literature on data modeling problems in general 

CAD/CAM or VLSI applications. As discussed in Chapter 2, many of these applications 

use the molecular object approach to model design objects [Bat84, Bat85, Buc85, Has82, 

Hel87, Kat85, Sto87]. Recently, however, many of these researchers have turned their 

attention to issues such as version control, choosing to remain with the molecular object 

data model. [Bha87, Dit88, Kat86, Kat87, McL83].

Two novel approaches to design data modeling come from recent doctoral 

dissertations. One is the Design Object Model (DOM) by [Bap86]. In the DOM, almost 

every concept related to the design is encapsulated into an object along with a set of 

allowable operations. Objects related to the design in DOM include interfaces, 

implementations, views, components, interconnections, evolutions, schemas, instances, 

copies, definitions, and for anything not included in the above list, a generic object. The 

model in this proposal is conceptually much simpler than the DOM approach because it 

encapsulates most of the design issues into the module object itself, thereby allowing the 

designer and database to deal with the issues in a  unified manner.

The second project is by Stephanie Cam m arata, and is oriented towards a 

mechanical design, engineering, and manufacturing application where she works. The 

data model in her thesis concentrates on storing the product definition data  tha t is 

generated in the initial design phases. Her model is constructed from four basic 

components; intentions, instances, descriptions, and extensions. An intention corresponds 

to a generic, prototype object. An instance represents a real world object, and is a copy, 

or instantiation, of the intention. The description contains the values of the attributes of 

the instance. The entire design is comprised of the set of all design object instances, and 

is referred to as the extension. The Cammarata model differs from the model in this
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proposal in th a t it is heavily based on set theory and predicate logic.

10.3.2 For Software Engineering

One major research project in the area of CASE is an on-going effort a t the 

University of Colorado called Cactis [Hud87, Hud88]. Cactis is designed to support the 

construction of objects and type/subtype hierarchies, which are useful for managing the 

complex data found in software environments. In fact, Cactis is a complex object model 

that references other objects via the relationship. This relationship is a very simple 

interface, consisting of only the number, type, and direction of the values in what is 

essentially a param eter list. Cactis concentrates on functionally defined and derived 

information, and considers the multiple references between objects as creating an object 

base similar to an attributed graph. Through the use of well-known graph algorithms, 

this representation allows the Cactis system to support the design environment while 

retaining good performance characteristics. Unlike the model in this proposal, Cactis 

allows some procedurally defined data which gives an object local behavior. Like the 

interface in the molecular object model, the simplicity of the Cactis interface allows a lot 

of flexibility in filling sockets in the design; however, no support for this action is 

addressed. Finally, Cactis admittedly is not m eant to support real-time graphic editing 

and checking efficiently.

Recent work a t Brown University has investigated object-oriented database 

support for "conceptual" programming [ReS86, ReS87, Van84]. This system, called 

GARDEN, is a programming rather than  a design tool and utilizes a Smalltalk-style 

approach for its objects.
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11.1 Introduction

The field of CASE is relatively young and constantly in search of new ideas. Of 

the many issues currently being investigated in CASE, several im portant ones are being 

addressed here. These include not only the prim ary concern of data modeling, but the 

integration of major software design techniques, a friendly and functional user interface, 

and, especially, a strong reusability capability. Most of these topics are discussed in 

detail as part of the evaluation of the IDM in Chapter 9.

The prim ary contribution to the field of software engineering made by this model 

is the high emphasis and support it provides for the reuse of software components. By 

specializing the interface to handle the two roles it assumes in the design process, and 

by opening parts of the implementation of a design object to the user, the IDM model 

assists designers seeking a  flexible way to mate requirements with availability. With 

the pending crisis facing the supply and demand for software [Weg84], CASE systems 

tha t fotyow-tbe CAD/CAM approach of assembling new products from existing 

components will be greatly needed.

This chapter analyzes the contributions of the IDM to the field of CASE from 

the perspective of the definition of a data model for CASE reusability

RDM = (CCDM, G, S ^ ,  R, P big) 

introduced in Section 2.6. The three elements of the generic data model GDM are 

extensively discussed in the Appendices; Appendix I details the data model structure S, 

Appendix II details the allowable operations O as well as the constraints C on the data 

structure and the operations. The remaining elements of the RDM represent the special 

attributes of CAD, CASE and software reuse. They are comprised of fifteen 

requirements, also introduced in Section 2.6, and are summarized in the table below. In 

this table, the IDM is rated on a three-point scale according to the level of support it
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gives to each requirement; either weak, average, or strong. Also included in the table 

are examples of other data models that do particularly well, or particularly poorly, in 

meeting the requirement. A justification for these classifications is given as part of the 

evaluation of the IDM in the sections tha t follow.

The analysis of each reusability requirement identifies how the IDM contributes 

to CAD, CASE, and software engineering by addressing that issue. Since most of the 

contributions that the IDM makes to the field of software engineering apply equally well 

to the field of CAD/CAM, these contributions are included in the discussion where 

appropriate.
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IDM E va luation  Sum m ary

Criteria for CASE / Reusability IDM Other Models 
that do Well

Other Models 
that do Poorly

W A s

1. Provides Conceptual View of 
Design D ata

X Molecular Functional

2. Provides Conceptual View of 
Engineering Process

X Complex Objects

3. Supports Multiple 
Implementations and Versions

X Complex Objects Relational

4. Efficiently Models All CAD 
Structures

X Complex Objects Traditional Dats 
Models

5. Permits Access to 
Implementation Attributes

X Molecular

6. Has Distinct Object Boundaries X Object in Field Functional, 
Complex Objects

7. Models Complete Lifecycle X Complex Objects Relational

8. Represents Complex Data Types X Complex Objects Functional

9. Suitable for Graphical Design X Molecular QUEL as a 
Data Type

10. Contains Classification Criteria X Molecular

11. Separates Object Requirements 
and Object Capabilities

X Molecular

12. Retrieves Objects using 
Abstract Criteria

X

13. Can Organize Archive for 
Distributed Systems

X

14. Can Organize Archive for Data 
Sharing and Integrity Constraints

X

15. Suitable for Large Scale 
Applications

X Relational QUEL as a 
Data Type

KEY: W=Weak, A= Average, S=Strong

NOTE: The contents of this table are justified in the following sections.
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11.2 Contributions to Software Engineering and CAD/CAM

11.2.1 To Semantic Modeling of CAD Data

1. Model must mirror the designer’s conceptual view o f data.

Evidence in recent research reveals th a t this feature is supported by 

logically separating design objects into interfaces and implementations in the data 

model, as is done in the molecular data model. This separation follows the 

object-oriented design paradigm where the program modules are viewed from two 

perspectives; the overall functional viewpoint tha t the user of the module sees, and 

the detailed specification viewpoint that the implementor of the module sees. The 

IDM takes this same approach to modeling design objects, allowing the designer to 

manipulate only the functional definition of a  module as an interface object, or to 

manipulate the implementation of the function as an alternative object. An 

example of a model that does not do this well is the functional model, which, 

because of its mathematical "argument-in," "argument-out" orientation, m akes it 

difficult to visualize the composition of the design objects.

In order to represent flow of control in the program design, interfaces and 

implementations in the design reference each other through the call object, which 

represents a subprogram call. However, this call has a very abstract constitution, 

allowing the designer the flexibility to change and develop requirements a t  any 

point in the program, as well as providing the operations to help him locate 

existing components to meet the needs that are specified. This approach to 

software design concepts is unique to the IDM.

For CAD/CAM, the contribution of the IDM in this thesis is to provide a 

new approach to modeling molecular objects. The traditional CAD/CAM approach 

of using the interface portion of the object in two separate roles semantically limits 

the model. By separating the dual functions of the interface into the declaration
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role and the call role, the model is made much more powerful and flexible in the 

m anner that each part is represented.

This new approach to data modeling is a major contribution to the field of 

CAD and CAD, as will be evident in design systems based on the IDM. Designers 

will no longer be required to instantiate an instance of an interface object to 

represent a "socket" in a CAD design. In this way, designers will become aware of 

the distinction between interfaces used to represent existing reusable parts and 

interfaces tha t merely hold a place in the design to "call" some sub-part. The 

design process will reflect this distinction conceptually as well as graphically. As 

the designer adapts to this notion and learns to fully develop his requirements and 

constraints interactively before attem pting to implement them, the number of new 

interfaces and alternatives created during a design will be greatly reduced. This 

will not only save space and effort, but will also hopefully lead to greater accuracy 

in the final software product.

2. Model must mirror the designer’s conceptual view o f the design process.

In both CASE and CAD, the design process is incremental and 

evolutionary. I t is a structured procedure tha t repeatedly reduces large problems 

into several smaller subproblems. The IDM supports this approach through the 

semantic structure of the alternative object, where the implementation of a module 

is modeled as a series of calls to subprograms. The call object further supports the 

concept of interchangeable parts by providing a variable-shape socket which can 

adapt to components available to fill it. This contributes to CASE and CAD by 

providing object structure and operational support for design, unlike models such as 

complex objects th a t generally lack the semantics that give meaning and 

constraints to this process.
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Since the division of large problems into smaller ones can also take 

advantage of both bottom-up and top-down techniques, the IDM supports both of 

these approaches. In fact, any reuse of existing components is inherently a 

bottom-up activity. In the IDM, modeling the alternatives of modules as 

subprogram call encourages the top-down design approach. The binding of existing 

components from a reusable software library to the call objects encourages the 

bottom-up approach.

3. Model must efficiently represent the object structures found in CAD.

Any CASE or CAD data model m ust be able to effectively represent 

recursive, non-recursive, disjoint, and non-disjoint objects. As discussed in Chapter 

2, the traditional relational, hierarchical, and network data models universally lack 

this ability. On the other hand, CAD data models such as complex objects are 

designed expressly for this purpose and can model all of these object types. It 

remains to show only that the IDM can also model these object types, as they 

appear in software.

Any simple program design is an example of a disjoint, non-recursive 

object, and can be easily represented in the IDM structure. As an example of a 

recursive structure modeled in the IDM, consider a design for a factorial function, 

as shown in Figure 11.1. The first call to "Fact!" has bound to it a interface for 

the factorial function and an alternative that implements the function. The 

alternative, in turn, has code that includes a recursive call. This call has bound to 

it the same interface and alternative as the first call. In the graphic representation 

of this situation note that a more intelligent routing algorithm would draw the line 

representing the call around the module box rather than through it.
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F a c t !
v .  0

F a c t
v ,  0

Figure 11.1. A Recursive Call

As an example of a non-disjoint structure, consider two routines, say a 

mouse m anager and a keyboard manager, that need to know the position of the 

keyboard cursor. They both make calls to a subroutine, "Cursor Position," that 

supplies this information. Since the original calls from "Mouse M anager" and 

"Keyboard Manager" are unique, they are represented by two call objects. 

However, since the same interface and implementation are bound to these calls, all 

subsequent actions are non-disjoint. Therefore, the calls made by "Cursor Position," 

namely "Mouse On," "Get X," and "Get Y," are all represented only once.

4. Model must allow multiple implementations/ configurations/ and versions of a design 

object.

The IDM models multiple alternative implementations and versions of 

modules through the association abstractions described in Chapter 3 and Appendix

I. These abstractions are "Alternative list" and "Version list." Configurations

are considered alternative implementations, since they typically consist of minor 

variations of an alternative made in order to conform to local site requirements.
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Figure 11.2. A Non-Disjoint Call

The IDM fully represents these concepts, although not in a particularly novel or 

unique fashion. The technique is similar to that in molecular and complex objects, 

but is much better than a relational implementation, which is not able to 

implement version control mechanisms without significant difficulty.

5. Model must allow ALL externally visible attributes o f a design object to be accessible 

to the designer.

While most current CAD models, and especially the molecular model, fail 

on this point, the IDM is an im portant contribution to the field of software 

engineering because it clarifies the role that a software interface plays in 

object-oriented programming methodology. In languages th a t support separate 

compilation of module definitions (ModDefs) and module specifications (ModSpecs), 

the ModDef portion is the only part of the module the designer is allowed to see.
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This section of the program may contain only the param eter list of a module and 

whatever other comments the original programmer chose to include; all details 

contained in the ModSpec are inaccessible. However, it is likely that more 

information, particularly about the performance characteristics of the module, must 

be known before the module can be used. Unfortunately, this information is 

contained in the ModSpec.

The IDM data model stresses the fact th a t certain implementation-specific 

attributes of modules are visible across this interface and should be readily 

available to the designer. This information is contained in the performance 

attributes section of the alternative object. These attributes allow the designer to 

make a more informed decision about the usefulness of a reusable part in a given 

application.

6. Each part of the model should have a distinct boundary.

The IDM has a strict sense of object boundaries in the model, both for the 

enforcement of structured programming scope rules as well as for database system 

efficiency. The scope rules are dependent on the declaration structure of the design, 

which is viewed and manipulated through the PSS diagram editor, and effects the

"Declarations" and "Declared by" fields in the model. Efficiency of database

operations is also a major concern, and for this reason the distinctness of object 

boundaries is strictly adhered to. This issue is fully discussed in Section 9.6.3; the 

important point is that only those objects specifically needed for an operation are 

retrieved by the database.

The IDM is therefore considered to be very strong with regard to this 

modeling requirement. Another model that does well in this area is the 

object-in-a-field model, in which object boundaries are clearly delineated by storing
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all the subparts of an object in a single abstraction. Objects tha t do poorly defining 

object boundaries are (1) the functional model, in which it is difficult to separate 

functions which define attributes and functions tha t define relationships to other 

objects, and (2) the complex object model, in which one experiences the same 

problem as with the functional model, except with the tuples th a t comprise the 

object.

11.2.2 To Semantic Modeling of CASE Data

7. Model must support all phases of lifecycle, from requirements through to maintenance.

The IDM, while being particularly effective in the middle stages of the 

software lifecyle, depicted as "Product Design" to "Code" in the waterfall model of 

Figure 1.1, is also capable of supporting earlier and later stages of the design 

process. Since product requirements are developed and stored as part of the IDM 

call object, the model can be used during early stages of design to specify product 

requirements in a  top-down fashion. Also, since the call object has a liberal policy 

regarding the modification of its attributes, the model can be used for developing 

upgrades to the software as well as during the maintenance phase of programming 

as the original product requirements change.

Other CAD models, such as complex objects, can be used to manage 

software lifecycle data, assuming they are given appropriate semantics. Traditional 

models, however, fail to perform well in this role for the same reasons they do not 

handle version control well; the database schema is not flexible enough to adapt to 

the dynamic requirements and design objects of CASE and CAD. The IDM makes 

a contribution in this area by addressing each of the lifecycle stages in some degree 

of detail. The planning and requirements phase is the responsibility of the call, the 

high level design the responsibility of the interface, and low level design the realm 

of alternatives. Each of these objects plays a part in the maintenance of the
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design.

The "code" of the program design is modeled as a series of subprogram 

calls. Each call is stored in a pseudocode style format th a t is independent of any 

implementation. This provides an uniform input to a post-processor or source code 

generator for conversion to any one of various source languages and environments.

8. Model must be able to represent the complex data types that are prevalent in software.

As discussed in the requirement 4, like most CAD models, the IDM can 

model all four of the basic CAD objects. Since in CASE, interfaces must be able to 

pass data in the form of records, arrays, and linked-lists, and other such complex 

structures, the data model should explicitly provide a mechanism for representing 

the exchange of this information. The data model allows for the construction of 

these complex data types through the "Declarations" of the alternative object. The 

full implementation of this feature allows variables and param eters to be declared 

as any of these user-defined types, as well as any of the basic types more 

commonly used in programming, such as integer, real, etc. Models that do poorly 

representing complex data types are all of the traditional models, for the same 

reasons as they do not represent basic CAD objects well, and the functional model, 

in which complex compositions are difficult to construct using the binary 

relationships on which the model is based.

11.2.3 To Capture of Design Data

9. Model must be compatible with graphical design paradigms.

The IDM is a model with a strong sense of program structure and flow of 

program control. This orientation is based on extensive research on the nature of 

the major software engineering paradigms and the goals of each methodology. 

Chapter 4 details these findings and the rational behind the new Program Dynamic
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Structure and Program Static Structure diagrams th a t resulted from this study.

The IDM and these diagrams are very closely related, based on this research. 

Therefore, it is no surprise th a t the editing operations used in the PDS and PSS 

diagrams have a direct one-to-one correspondence with the operations on the data 

model. 11

Another data model th a t does well in graphical form is the molecular 

model, especially for VLSI applications. The interface and implementation views 

are ideal for visual representation, as shown in Figure 2.8. However, a model such 

as QUEL as a data type lacks any meaningful graphical representation, since it is 

comprised of nested database queries.

11.2.4 To Classification of Design Data

10. The model must contain machine recognizable classification criteria.

The IDM has a keyword-based object classification schema built into the 

structure of each of the objects th a t comprise the model. This schema is located in 

the "Description" and "Performance" fields. The values of the keywords are set by 

the user, then extracted by the system for the purpose of identifying, comparing, 

and retrieving the objects in the design database. While the same information can 

be extracted from any model used in a design environment, only the IDM explicitly 

provides this information to the database system. No intelligent extraction 

mechanism or traversal of the design data is required in order to determine search 

param eters, since the IDM declares these param eters in advance.

Since the IDM is the only model that has this feature, it is deemed to be 

strong on this point. The molecular model, which does not address the classification 

issue, and actually hides certain information, is rated poor a t meeting this 

requirement.

llThis one-to-one correspondence was strictly enforced in the prototype system.
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11. The model must differentiate between the component definition schema and the 

component requirements.

The IDM utilizes the classification schema in two roles that are distinctly 

separated by the objects of the IDM th a t contain them. Unlike the molecular 

model, which uses the interface object to define components in the library and also 

to serve as "sockets" in the design, the IDM declares a call object to specifically 

perform the latter role. Therefore, unlike in a molecular-based design environment, 

where the designer has necessary restrictions on changes he can make to sockets, 

the IDM allows calls, and therefore the entire program design, to interactively 

develop 12 and freely evolve. And unlike the molecular model, since the IDM keeps 

the software definition and requirements separated, the IDM further guarantees 

the integrity of the components in the reusable archive. Because of this separation, 

a semantic conflict cannot arise over the role of an object in the design. In the 

IDM, interfaces and alternatives are always used to define software components, 

and calls are always used to reference them. Therefore, the IDM is considered 

strong on this point, whereas the molecular model is considered poor.

11.2.5 To Retrieval of Design Data for Reuse

12. Model must support object retrieval strategies that successfully locate reusable 

components utilizing only abstract criteria.

Two separate object retrieval strategies th a t meet this requirement have 

been discussed and implemented for use with the IDM. The contribution that the 

IDM makes in this area is the incorporation of a major reusability issue in the 

design of a new data model and the application of retrieval algorithms in a 

prototype system. The prototype implementation has demonstrated that the IDM is 

strong meeting this requirement.

12 Hence, the Interactive Development Model.
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11.2.6 To Archive Storage of Reusable Components

13. Model must be compatible with an archiving method that supports distributed CASE 

environments.

A library organization that supports a distributed CASE environment and 

is compatible with the IDM model has been shown and implemented. This archive 

organization places publically accessible components in a central archive, and 

places components under development in private directories th a t can be physically 

located on individual workstations or private directory filespace. While individual 

library organizations are primarily site-dependent, this model stresses the need for 

support of distributed CASE environments from the semantic perspective. The 

library organization for this model, in providing a division between public and 

private storage, is designed to meet this criteria, and for this reason, the IDM is 

rated strong for use in distributed systems.

14. Model must allow sharing of data among users in a distibuted CASE environment.

The library organization presented allows several users to develop different 

portions of a software design in parallel. In the IDM, the partially completed 

designs can be shared by checking them in and out of the public archive. This 

technique is used in order to guarantee the integrity of partially-completed designs. 

However, while allowing a means for data  sharing, it does not provide support for 

truly merging parallel efforts. When several designers operate on the same design, 

the last design checked into the public library will take precedence. Therefore, the 

IDM is only rated average for its ability to promote data sharing. Nonetheless, 

database integrity in these situations has been extensively studied, and a locking 

mechanism can be incorporated into an implementation system.
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11.2.7 To Scalability

15. Each o f the data model requirements above must be viewed in the context o f being 

efficient for large scale applications.

The contributions of the IDM to requirements of scalability are in the 

design of the model, and the attention it gives to the reusability issues of data 

storage, design capture, classification of components, retrieval of components, and 

organization of a reuse library. In the chapters of this thesis th a t address each of 

these issues, the problem of making the issue effective for programming in the 

large is addressed. This takes the form of a consistent concern for time and space 

trade-offs in the classification and retrieval algorithms and strategies, to the 

"economy of scale," levels of abstraction, and object boundary considerations given 

to the graphical representations and the software archive. The IDM is intended to 

be a large scale systems model.

11.3 Contributions of the Implementation

The implementation of the data model on the ROSE engineering database 

system is also innovative and noteworthy. Since ROSE provides many features of a 

relational database, such as a query language based on a relational algebra, and many 

features of an object-oriented database, such as clustering related data into objects, the 

system prototype performs well in two ways. First, the relational orientation provides a 

fast and efficient search facility for queries and updates. Second, the object-oriented 

facility provides the semantic qualities necessary for the data model, as well as efficient 

handling of the design and graphics objects.

Finally, one particularly unique .feature of the system prototype presented in 

this thesis is th a t the database not only serves to organize the design data, but the 

database also manages all of the information related to the menus, editing windows, 

and graphics. This is significant in th a t it demonstrates the flexibility and power of
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supporting a CASE environment with a database system. Additional details on 

implementation and interface issues can be found in Appendix III.

11.4 Conclusion

The EDM was developed with the above fifteen requirements in mind, as they 

apply to the definition of a data model for use in a CASE system for software reuse. It 

has been shown how the IDM addresses each of these points, and therefore qualifies as 

a candidate data  model for these applications.

The major contributions of the model are in specialization of database objects to 

perform the two roles of a software interface, and in the subsequent flexibility 

throughout the design process that this enhancement gives the designer. This also has 

an impact on the traditional view of object-oriented design, pointing out that some 

implementation details m ust be included as part of the externally visible attributes of a 

module traditionally included in the module interface.

A significant effort has also been dedicated to studying various issues 

surrounding the reusability problem and how the EDM addresses these issues. For the 

capture of software design data, a new type of Structured Design editor was developed 

that uniquely corresponds to structured programming and the new data model. 

Numerous software classification and object retrieval techniques were studied, with 

several of these implemented in order to study and demonstrate the effectiveness of the 

IDM with these techniques. Finally, a software library organization th a t supports the 

three types of objects in the IDM and supports distributed software development 

environments was developed. Never before considered as an integrated package, the 

research on these issues highlights the importance and complexity of reusability in 

computer aided software engineering and proposes a viable solution.
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12.1 Introduction

Although the data  model in this thesis addresses many issues surrounding data 

m anagement and storage requirements for software engineering, not all of the problems 

in this field have been identified, much less solved. To date, there rem ains several areas 

in which there are open questions and in which more work needs to be done. Some of 

these areas are discussed below.

12.2 Research Topics

While it has been discussed how the IDM supports the entire software 

development process, the prototype implementation primarily addresses the middle of 

the software lifecycle, ie, the component and module levels of design as described in 

[Phi86, Phi88]. While the model is capable of modeling design data across the entire 

lifecycle, this particular prototype is not m eant to give much support to the early 

requirements phases and the later testing and maintenance phases of design. This 

decision was made for several practical considerations and real problems.

The decision was made not to concentrate on analyzing problem statem ents 

because this area is very nebulous, difficult to quantify, and still seems to require large 

amounts of direct hum an participation. The keyword classification schedules in the call 

that depict software requirements are minimal, and a study of w hat kinds of 

information are necessary to complete a requirements statem ent in this context is 

worthwhile. The coding, testing, and maintenance phases are not specifically addressed 

because they tend to rely on a different set of software tools than the database supplies, 

for example, compilers and test case generators. However, the model is capable of 

storing a source-language independent form of pseudocode that can be interpreted by an 

additional tool or post-processor. The data model should adequately provide the input

197
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and support for these tools.

Furtherm ore, since the call object is a very dynamic structure, it may be 

desirable to m aintain a log or history of the development of the call. This would be a 

particularly usefull feature during maintenance of the product. Some form of version 

control for call objects that is perhaps similar to tha t used for alternative objects may 

be required.

A desirable feature of a CASE system is to allow the user to view or design a 

program using one of several techniques or levels of abstraction. While earlier research 

[Pou88a] identified the difficulties surrounding automatically generating multiple 

representations of a design from a common store of data, it is possible to provide the 

tools for the user to do these things himself. For this reason, the prototype has been 

developed with the capability to add any number of graphic design and documentation 

editors as the system evolves. Future work would be to investigate the interaction of 

these tools within the context of a CASE system  based on the IDM.

An additional goal is to expand on the ability to allow the user to specify a level 

of abstraction from which he wishes to view the design. Currently, levels of abstraction 

are supported by showing and hiding levels in the calling of declaration structures of the 

program. There is good reason to allow the user to further define his own levels of 

abstraction, possibily based on a conceptual rather than physical organization [Rov88]. 

At a high level, for example, an operating system would be viewed as a set of logical 

components such as the I/O component and the Memory Manager Component; in the 

actual design these have no direct physical counterpart. At the low level, these 

components are specific functions composed of variable declarations and code. While an 

actual implementation for this kind of abstraction mechanism needs to be researched 

further, it is believed that logical abstractions can be provided by how the application 

software interprets the data stored in the model.
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One major remaining concern involves accommodating the major role that data 

structures play in the design of programs and software systems. Most software design 

methodologies concentrate on the functional requirements of the system and almost 

completely ignore the design of the underlying data structures. Although it is believed 

that the software design process is a parallel development of functions and data, the full 

extent of this relationship and how the data model supports it needs further study.

There are several additional practical considerations surrounding the 

implementation of the prototype. These arise out of the trade-off that m ust be made 

between the desire to make the system as realistic and usable as possible, and the need 

to be able to actually code the desired features. One such problem is providing 

interfaces for the definition and querying of the highly recursive code and data 

structures. While the data model is designed to accomodate these requirements, a 

compromise in the implementation of these issues has been made. Further time and 

effort in this area can add to the findings of this research.



www.manaraa.com

13. DISCUSSION AND CONCLUSIONS

In light of the numerous advantages of database support for the engineering 

design process, much research has gone into applying this technology to CAD, especially 

with respect to VLSI design. Little, however, has been done to use this knowledge in 

the design of software. This research has identified several of the important similarities 

as well as some significant differences in the two domains. These include the question of 

reuse of program modules, version control requirements, and storage representations. 

Reusability of software, while a complex melding of the issues of capturing, classifying, 

storing, and retrieving software design data, may prove to be the most productive 

approach to software engineering. This thesis demonstrates a data  model specifically for 

use in CASE that addresses these issues, and identifies valid operations on the model.

This three-part data model separates the interface portion of the molecular 

object model into two distinct portions. These two parts reflect the two different roles 

tha t an interface has in the semantic representation of design data. First, the interface 

defines and represents the object. Second, the call is used to a request service from the 

object. Finally, the implementation of the object is contained in the third part of the 

data model. Operations on this model are identified and are adapted to the roles each 

part of the model plays in representing the software module.

The major contributions made by this model to the fields of software engineering 

and engineering CAD center on the explicit effort this model makes to support reuse, 

and the new approach the model takes to representing molecular objects. The separation 

of the interface into the module call and module definition portions more closely 

describes the actual roles of these entities in a program design. This separation also 

allows the model to customize operations on each part, in particular, to assist the 

designer in locating previously defined interfaces th a t meet the requirements of a 

current subprogram call. Finally, by providing a location in the model for recording

2 0 0
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design constraints, software requirements have been made an integral part of the 

design process. No other CAD data model addresses this relationship between software 

requirements and the final product.

A prototype implementation of a language-independent CASE environment based 

on these modeling ideas has been completed. Several graphical editors are provided, 

including a type of Structured Diagram editor, a program structure editor, and a 

variety of formatted text entry tools. A comprehensive data retrieval mechanism is 

provided and is based on the software classification schema built into the IDM. The 

prototype stores design objects in a software library that is organized both to support 

the three types of data objects in the IDM as well as the special requirements of a 

distributed design environment. All design tools are incorporated into design editors and 

activated through a series of pull-down menus. A sample terminal session in this CASE 

environment is shown in Figure 13.1. Special emphasis has been placed on providing 

flexible access to the reusability characteristics built into the model.
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Figure 13.1. Sample Session with the CASE Tool
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Figure Al. 1. Interface Object Structure
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Alternative
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Figure A 1.2. Alternative Object Structure
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APPENDIX II: Operations on the IDM

15.1 Introduction

This appendix gives a detailed analysis of the allowable operations on the 

Interactive Development Model and the constraints tha t m ust be enforced during the 

execution of those operations. The purpose of this appendix is to provide the detail 

necessary to guide any implementation of the model, as well as to substantiate the IDM 

from a  theoretical perspective.

All of the operations presented here have been implemented as p a rt of the 

IDM-based CASE prototype discussed in chapter 8.

15.2 Interface Operations

15.2.1 Constraints

In order to allow direct access to interfaces by name, the interface name is used 

as an index. This places the restriction on all interfaces tha t the names of each 

interface be unique. In order to enforce this constraint, a check of the interface archive 

is completed before the create interface operation is allowed to complete.

The attributes of an interface are considered non-modifiable. This is because the 

interface, along with a group of alternative objects, defines a software module. If it were 

permissable to modify the interface, then it would be possible for. the designer to change 

the interface in ways th a t are not supported by some or all of the alternatives that 

implement the interface. If this were so, the interface would no longer accurately

represent the module th a t it serves to define. For this reason, there is no edit interface

operation. The correct course of action when a change to an interface is desired is to

copy the interface into a call object, make the desired modifications using the edit call

operation, and then create a new interface from the call. This method has the added 

advantage of allowing the designer to leave the interface in a partially-defined state for

2 0 7
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as long as is deemed necessary by storing the information as a call object.

In order to ensure that no "orphan" alternative objects are created in the 

software archive, the deletion of interfaces is not allowed when there exist alternative 

implementations for the interface in the library. However, removal of interfaces having 

no alternative objects implementing a function is permitted. A note of particular interest 

is that, in general, it is desirable to indefinitely m aintain all interfaces in the software 

archive for a variety of documentation and legal reasons. While it is not practical to 

absolutely deny deletion rights to the designer, it may prove worthwhile in a production 

environment to supplement or replace the deletion operation with a sleep operation, 

which would have the effect of moving the module objects to a long term archive or 

storage medium such as tape.

The only remaining matter for consideration is the viability of copying 

alternatives for an interface when the interface is copied, and likewise whether to copy 

versions along with the alternative when an alternative is copied. The semantics of the 

IDM allow some flexibility on this point, although it is preferred not to make these 

copies. The reason is tha t there is no way to enforce whether the newly created 

interface or alternative will perform the same action or in the same m anner as the 

original; it m ust in fact be presumed that this is not the case. Therefore, copying such 

information would guarantee that at least for a time there will be inconsistent 

information in the database.

However, it is conceivable that such a copy should occur. Assume that a 

complete, tested interface and alternative implementations for tha t interface exist. 

Suppose that the represented object is a routine th a t sorts an integer array. Now 

assume that the designer wishes to create similiar routines to sort a real array. 

Normally he would create a copy of the integer routines and simply use the find/replace 

function in his text editor to make all occurrences of the keyword "integer" into the
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keyword "real." Including such an operation is viable, as long as these issues are 

understood. Note that if this function is provided it is necessary to differentiate the new 

objects from the old by making copies of the calls in each alternative and assign new 

surrogate identifiers to each.

15.2.2 Operations

16. create_interface: this creates a template for a new interface in the workspace and 

allows unrestricted modification of the interface attributes. This operation provides 

the designer with the ability to generate completely new, as yet undefined, 

interfaces. As in the previous operation, when this process is complete, the 

interface may be frozen and become the definition for a new object, or it may be 

saved as a call for later modification. Therefore, the result of this operation is 

either a new, complete interface object or a new call object.

17. copy_interface: this copies an existing interface into the workspace as a call object 

and allows unrestricted modification of the new call’s attributes. This allows the 

designer to save time and effort when creating a new interface by using an 

existing interface that may be similar to the one desired. All of the fields in the 

new call object are given the values in the fields of the copied interface. When all

of the attributes have been assigned desired values using the edit call operation,

and the modifications are complete, the interface m ay be frozen using

create interface and it becomes the definition for a new object. If  this action is

chosen, the designer will, of course, be required to choose a new name for the 

interface so as to differentiate it from the interface from which it was created. 

However, if the interface definition is not considered complete, the information 

contained in the partially completed interface may be saved as a call object. 

Therefore, the result of this operation is either a new, complete interface object or 

a new call object.
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18. retrieve_interface: fetches a specific interface from the database library using the 

interface name as the key. The purpose of this operation is to provide access to the 

interfaces in the software library and in the local workspace. The operation is 

executed either implicitely by the system as part of a design operation, or 

explicitely by the designer as p a rt of the reuse process. The result of this operation 

is find the desired interface in the appropriate location and load it into the main 

memory work area for general access.

19. search for_interfaces: the search operation assists the designer in locating

interfaces in the database library th a t may meet a given call by using full or 

partial matches on the interface keywords and param eter list. In practice, any 

number of search and retrieval strategies m ay be used; this is the topic of a later 

chapter. The purpose is to provide the user with a database operation th a t directly 

supports the software reuse capability of the CASE system. The result of the 

search operation is the identification and retrieval into main memory of one module 

or a group of modules th a t meet the search criteria. If no modules m eet the desired 

criteria, a null result is obtained. Any modules identified as part of the search 

operation can be used as the source interface for most of the other interface 

operations.

20. bind interface: associates the interface with a call in the program design. The

purpose is cause the bound interface to be invoked whenever the associated call 

object is executed. During program design, invoking the interface from a call 

implies that the designer has located and approved of the use of that interface to 

meet the need specified in the call object. The binding association may be 

permanent, or subject to constraints that are dynamically evaluated when the call 

is evaluated. The effects and advantages of dynamic binding are discussed above. 

The result of this operation is the storing of a reference pointer in the call to the
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bound interface.

21. display_interfaee: shows all the attributes of the interface to the designer. The 

purpose is to allow the designer to view the attributes for his information. The 

attributes to be displayed include any administrative information, descriptive 

keywords, and param eters. The result of the operation is to output the attributes 

in a specified format in a design window or on some other working surface.

22. display_altematives: shows all the alternative implementations of the interface to 

the designer. The purpose of the operation is normally to allow the designer to 

choose among the available alternatives a possible candidate for use in the current 

application. The alternatives may be browsed, during which time they are subject 

to the operations on alternatives below. Therefore, the result of this operation is 

dependent on the operations conducted during the browsing process.

23. delete_interface: removes the interface from the library. The purpose of this 

operation is to explicitely remove from the library any interfaces th a t are no longer 

desired. As discussed above, in order to prevent the creation of orphan 

alternatives, this operation is disabled if there are alternative implementations for 

the interface remaining in the database. The result of the operation is to remove 

all evidence of the interface from the public archive and private workspaces.

15.3 Calls

15.3.1 Constraints

In the IDM the call is always considered to be unique. In other words, every 

request for service is somehow special, and every call object in the design represents 

exactly one such request. A further explanation of this uniqueness follows.

When copying a call, what does the designer seek to do? In the IDM it is 

determined that he is developing a similar (or, for that matter, exactly the same) call
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for use somewhere else. Still, because it is made from a  new location it m ust be 

different. In database terminology, it is an instance of a  request. As an example,

consider a fictional routine "get char {c}” as it might be called from the two routines

"read int {I}" and "read string {S}." There are, in fact, two calls made. W hat is the

same in this case is that the same interface, namely the one for "get char," is bound

to both calls. Still, only one copy of the interface and alternatives for "get char" exist

in the database.

This uniqueness of the call object forces the constraint th a t every call be 

identified, and therefore indexed, by a surrogate system-generated identifier. When 

operations on the model might effect the uniqueness of the call, care m ust be taken to 

ensure that these identifiers are not duplicated.

A call may or may not an interface and/or an alternative bound to it. However, 

calls m ay not have an alternative bound to the call without an interface also being 

bound to the call. The further restriction implied here is tha t the interface tha t is bound 

to the call is the interface th a t defines the alternative th a t is bound to the call. This 

prevents attem pts to mix interfaces with alternatives th a t are defined by other 

interfaces, or attempts to leave an alternative without a defining interface. Of course, it 

is possible to bind an interface to a call without binding an alternative for the interface 

to the call.

15.3.2 Operations

1. create_call: creates a template for a new call in the workspace. The purpose of the 

operation is to generate module calls whenever and wherever they are required. 

Upon creation, the call template is assigned an unique surrogate identifier for 

indexing purposes. This operation has the effect of generating a generic, abstract 

request for service, which can be referenced from any point in the current program 

design. The operation results in adding the call object to the database and caching
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the call for subsequent operations.

2. copy_call: retrieves an old call using the retrieve option and copies the call into the 

workspace. This has the effect of creating a new call with all the attributes of the 

original, except for the surrogate identifier used to identify and index the call. 

Instead, a new surrogate identifier is created and used. The purpose of the 

operation is similar to that of the similar operation for interfaces; it saves the 

designer time when creating multiple instances of similar calls. However, in the 

case of the call object, the copied call may have all of its visible attributes identical 

to the source call, such is the case when a given routine is called from multiple 

locations. The names of any interfaces and alternatives tha t are associated (bound) 

to the call are also copied, since it is presumed th a t the same request will be filled 

with the same routines. As a matter of administration, the designer’s name and 

date are not copied, and should be entered by the person requesting the operation. 

The result of the operation is the addition of a new call object to the database and 

the caching of the call for subsequent operations.

3. retrieve_call: is used by the system to locate calls in the database library. The 

purpose of the operation is to provide fast and efficient access to the information 

about software requirements at a given location in the program design. Because 

the search key is a hidden surrogate identifier, this operation is indirectly 

accessible to the designer. After completing the search for the call, the system 

caches the identifier of the selected call for subsequent operations.

4. edit_call: allows unrestricted modification of the call. This operation allows the 

program design to evolve and change without comprising the integrity of the 

interface and alternative objects that define the design modules. All of the 

constraining keywords, comments, and administrative information may be edited. 

The identifying surrogate key is, however, immutable. The result is the
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replacement of the old values of the call attributes with the new values specified 

by the designer.

5. make__call: gives a call object a point of call in the code of an alternative. The

create call operation makes a new call and allows the request for service to be

developed; this operation assigns the call to a location in the code of the program 

design. The operation results in the addition of the surrogate identifier for the call 

being added to the code for the alternative that is specified as part of the 

operation. The identifiers for all calls made within an alternative are logically 

stored in the order in which they will be made during execution of the program.

6 . unmake_call: removes a call object from a point of call in the code of an 

alternative. The purpose of this operation is to remove a service request if it is no 

longer needed, or to allow the designer to change the order of the requests. Of 

course, the call must be actually made from the specified alternative for the 

operation to successfully complete. The operation results in the surrogate identifier 

for the call being removed from the code of the specified alternative object.

7. unbind_interface: manually removes an existing association between a call and an 

interface, if such an association exists. If none exists, an error occurs and no action 

is performed. Then this operation removes any existing association between the 

call and an alternative. This prevents the existence of a call with a bound 

alternative and no bound interface. The purpose is to disassociate modules from a 

point in the program where they are called, an action which may be done a t the 

designer’s discretion any time during the design process. The resulting action in 

the data model is the removal of the key identifier for the bound object from the 

"Bound" field of the call and replacing the identifier with a null value.

8 . unbind_altemative: manually removes an existing association between a call and 

an alternative, if such an association exists. If none exists, an error occurs and no
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action is performed. The purpose is to disassociate alternatives previously thought 

appropriate for use in a call. Like the previous operation, this disassociation is 

done at the designers discretion. The resulting action in the data model is the

removal of the identifier for the bound object from the "Bound alternative" field of

the call object and replacing the identifier with a null value.

9. fill__call: automatically finds all interfaces and alternative implementations that 

m eet the requirements of the call and chooses one. The purpose of this operation is 

to provide automatic database support for the dynamic binding of design objects to 

calls as discussed above. If none are available, the system advises the designer.

The result of the operation is that, if an appropriate interface and alternative are 

located within the constraints of the call, the identifiers for those objects are stored 

in the "Bound" fields of the call object.

10. display_call: shows a call from the design database to the designer. This operation 

allows the designer to view the attributes of requests for service. The operation 

results in the call being output to the terminal in a predetermined format.

11. delete_call: removes a call from the database. This operation allows to eliminate 

requests for service when they are no longer needed, or when the designer changes 

his mind. Any alternatives or interfaces bound to the call are not effected. The 

operation results in all evidence of the call being removed from the designer’s 

workspace.

15.4 Alternatives

15.4.1 Constraints

An alternative cannot come into existence without an interface to represent it.

Therefore, before creation of any instance of an alternative object, an interface for the

alternative m ust be specified. The interface that the user specified for the new
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alternative is confirmed by the system.

As is the case for interfaces, alternative objects are indexed by name. This 

provides the user with a direct method to retrieve specific objects by the same name 

that he assigns them. In the case of alternatives, however, the alternative is dependent 

on its defining interface for its identity. Therefore, the complete key for an alternative is

a two-tuple consisting of (interface name, alternative_name), and therefore the name of

every alternative for a given interface m ust be unique.

15.4.2 Operations

1. create__alternative: creates a template in the workspace for a  new alternative. The 

purpose is to allow the designer to develop a new implementation method for an 

existing interface. The result of the operation is the addition of a  new alternative 

object in the database, where it is cached for further operations. The name of the

defining interface is stored in the alternative object as "Int Name" and the

identifier of the newly created alternative is added to the alternative list in the 

defining interface.

2 . copy_alternative: copies an existing alternative implementation into the workspace

using the retrieve alternative operation. This makes a copy of the alternative in

order to serve as the basis for another alternative. Like the similar operations for 

interfaces and calls, this operation exists to save the designer time. By default, the 

new alternative will be for the same interface as the original. The result is the 

creation of a template for a new alternative, with the values of the attributes of 

the copied alternative copied into the new template. A new alternative is then 

added to the database, where it is cached.

3. retrieve_alternative: fetches an existing alternative from the database library using

(interface name, alternative name) as a key. The purpose is to provide access to

the alternative for other operations. If the alternative is not in the local workspace
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then it is read from the public archive, as required. The result of this operation is 

first ensure the specified alternative is available, and then to cache the alternative 

for access by subsequent operations.

4. search for_altematives: assists the designer to locate alternative implementations

in the library for use in a given call. This operation works with the

search for interfaces operation in supporting the reuse of software components.

The search is based on alternative specific data such as performance attributes, 

and m ay use any of the search and retrieval strategies discussed in later chapters. 

The operation functions on alternatives for a previously specified interface. The 

result is to cache an alternative of the interface for input into subsequent 

operations.

5. bind_alternatiue: associates the alternative with a  call in the program design. The

purpose and results are similar to those for the bind interface operation. The

association between a call and alternative, like th a t for the interface, m ay be 

perm anent, or subject to constraints that are dynamically evaluated when the call 

is evaluated. When the binding is made, it is reflected in the data model by storing 

the identifier of the bound alternative in the "Bound" field of the appropriate call 

object.

6 . edit_altemative: allows modification of the alternative. This provides the designer 

to change comments and performance information about the alternative when it 

changes as part of the program design. All performance data and administration 

information is modifiable, with the exception of the alternative name and the name 

of the representing interface. The alternative name cannot be changed because it 

serves as the key for the object and its uniqueness m ust be guaranteed. The name 

is also used in any call object tha t currently binds the alternative. Normally, when 

alternative modifications are complete, a new version number is assigned and the
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modification log updated; this process is explained below as part of the version 

constraints and operations. This operation replaces the old attribute values with 

the new values in the database.

7. display_altemative: shows all the attributes of the alternative and its interface to 

the designer. The purpose is to assist the designer to select an alternative for his 

application as he browses the alternatives available for a given interface. The 

displayed attributes include any administrative information, performance 

attributes, and version data. The display operation results in the attributes being 

shown in a predetermined format in a window on the workstation screen.

8 . display_versions: shows all the versions of the alternative to the designer. This 

operation makes it possible to select among the various versions of an alternative, 

and to trace the development of the code for an alternative. As versions of the 

alternative are browsed, they are subject to the constraints and operations below.

9. delete alternative: removes an alternative from the database. As with interfaces, it

is normal for unused or old alternatives to be kept for documentation and legal 

reasons. The purpose of this operation, therefore, is to allow the designer to 

manually remove alternatives when they are no longer needed. All evidence of the 

alternative is removed from both the local and public databases.

15.5 Versions of Alternatives

15.5.1 Constraints

Although versions are not a separate object in the IDM schema, they are an 

im portant enough part of the alternative object to deserve special attention and their 

own set of constraints and operations. These constraints and operations serve an 

important function in version control in the IDM.
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Each alternative may have any number of versions to implement its function. 

One of these versions is designated as the current version, and is used for editing in the 

current design. In addition, each call may constrain which version is to be used for the 

call. Valid constraints are Current, Last, and specific version numbers. Since this is done 

dynamically as the designed is "compiled," or evaluated, it is necessary to keep the 

constrained version and the current version separate.

Once a version is created and assigned a number, it cannot be edited. I t is 

modified by making a copy of the version, and then editing the copy. The result may 

later become a new version of the alternative. Numbered versions can be approved, just 

as the current version can be approved. The difference is that after approval, any 

editing done on the current version nullifies the approval. The program is not considered 

validated, or consistent, unless all of the versions bound for use in the design show 

approval dates later than the version creation time.

Creation of versions is left to the designer. This allows maximum flexibility for 

version control. Another option is to create a new version automatically whenever 

certain changes are made to the alternative. However, this would entail classifying the 

types of edits into those that justify a new version and those tha t do not, and would 

undoubtably lead to a proliferation of versions.

15.5.2 Operations

1. view version: shows the designer the code and the derivation history of a  single

version. As with the other display operations on the three parts of the IDM, the 

purpose of this operation is to allow the designer to view w hat is available to him. 

The result of the operation is the display of the version on the appropriate viewing 

surface on the worstation screen.

2 . scan versions: allows the designer to browse the available versions of an object.

The code and the derivation history of each version are made visible through the
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view version operation.

3. approve version: the version passes site requirements and is validated by an

approving authority. The standards for this operation are dependent on the user, 

and will vary with the implementation. In the prototype, the result of this

operation is to set the fields "Approved by" and "Approval date" to the values

provided by the approving authority.

4. copy_version: This creates a new version of an alternative using the current 

version as a template. The purpose is to make changes to the code of the 

alternative, but in the process saving the previous status of the code as a distinct 

step in the development of the alternative. This may be required for 

documentation, incremental development, prototyping, or legal reasons. Actions on 

the version portion of the data model are as follows. The newly created version is 

set equal to the current version. This makes the new version ready for editing.

Call identifiers within the versions are not modified to make the calls within each 

version unique; this is unnecessary since only one version of the alternative is 

active a t any time. This preserves and ensures the uniqueness of the call, as 

discussed above.

5. set_current__version: designates the version currently being viewed as the current 

version for all future references to the alternative. The current version is the 

version used for editing, and is the version bound to any requesting call that 

constrains the version to "current." Therefore, this operation controls how the 

design is evaluated whenever calls constrain versions in this manner. The result of 

the operation is to store a currency pointer in the alternative to the version newly 

designated as "current."
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APPENDIX III: U ser Interface Issues

1. Introduction

User Interface considerations, although really not a part of this research, 

are important for many reasons. The most important of these is that the usability 

of any software tool is most directly effected by what the user sees, and 

particularly how he interfaces with the tool. Another reason tha t the interface is 

important is that it forms more of an initial impression about the system than 

what is actually going on behind the scenes.

Nonetheless, it is necessary to develop some kind of interface in order to 

demonstrate how the IDM functions in a prototype CASE environment. With this 

in mind, it seems worthwhile to put some effort into the interface so that useful 

observations made and added to our techniques for other applications. Finally, it is 

important to demonstrate how the IDM might appear if packaged in a somewhat 

reasonable fashion. However, it m ust be noted that the user interface for this 

prototype is not a research issue, and for this reason this discussion has been 

relegated to an appendix.

2. Text Entry Boxes

The text entry box is an effective technique for string input that provides a 

fixed format, prompts, and a variety of text fonts. One big advantage is tha t the 

user sees all of the entries he should make at once, and has the option of making 

them in any order. This is highly preferred over many sequential prompts in the 

dialogue box. The order of entry also has important consequences for the searching 

functions. The particular text boxes seen in the chapter describing the prototype 

are, however, uniquely ugly and somewhat large. The size is limited by the 

minimum font size under the UIS graphics system, and while the aesthetics are 

not so good they do not effect overall performance and functionality. All in all, the
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text box presents all the tools in one place in a standard manner. This advantage 

outweighs all disadvantages.

3. Editing Palette vs. Pull-Down Menus

The editing palette used for the PDS is something learned from and first 

developed as part of the CB SketchPad [Pou87]. The advantages are similar to 

those experienced by Apple computer users; the hum an mind assimilates and 

relates to icons faster than it can to text. However, such a palette is much more 

difficult to create, change, and expand. In this regard the pull-down menu is 

preferred over the palette, especially early in system development or during 

prototyping. The palette also takes up a lot of screen space, which in this 

application is a t a premium.

4. IPO Window

The concept of the IPO Chart is to display everything about a module in 

one place in a standard format. Unfortunately, there is a lot of information that 

we wish to display in the IPO, and not enough space to do it. P a rt of the problem 

is due to the minimum font size in UIS. An additional problem is the nature of 

some of the design information. Some information is of fixed length (designer’s 

name) while other information can be of any length (parameter lists). How much 

space does one leave on the chart to display such information? M any experiments 

with these two problems was conducted, including writing information 

microscopically small and using the zoom function to read it. Sending all 

information to the dialogue window was also considered; that solution, although 

much easier than filling the IPO chart, failed because the dialogue window was 

also too small for all the required information. The best solution was to put fixed 

length data on the chart, and list the variable length data on request to the 

dialogue window. This not only cleaned up the IPO chart but also made the display
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operation much faster. This is method currently in use.
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APPENDIX IV: The Correspondence Between DFDs and DSDs

Earlier research concentrated on the automatic conversion of one type of design 

diagram  to any other type. During this study, it was discovered tha t for the most part 

the methodologies could be mixed, within certain guidelines [Pou8 8 a].

The advantage of such an ability is that, assuming the design data was stored 

in some standard form, any representation, or view, could be automatically generated 

depending on the wishes of the user. Such a capability would be invaluable for 

documentation and report purposes, or in cases where several designers or managers 

wished to work on or view the program design using the diagrams of their own 

"favorite" methodolgy. Since the views are created from a common store, the views are 

always guaranteed to be consistent.

The major problem with such an ability comes in the creation of a DSD from 

DFD-generated design data, and the converse. Both of the methodologies lead the 

designer from a  problem statement to a software structure. Ideally, both methods would 

result in the exact same software (because there is only one "best" solution), although 

in reality this is quite rare (because the methods are very different). The problem 

becomes a m atter of how much information one is allowed to infer from the database. 13

Allow the discussion to take a slightly mathematical turn for a moment.

Consider a problem that has been analyzed using both the data flow and data structure 

techniques. Intuitively, if a program structure (PS) for this problem is derived from the

DFD, ie, f(DFD) = PS from DFD, then f-inverse(PS from DFD) = DFD. The same

follows if g(DSD) =  PS from DSD, then g-inverse(PS from DSD) = DSD. The next

question is, does g-inverse(PS from DFD) allow you to infer anything about the data

structures of the program? Does f-inverse(PS from DSD) give you a good data flow

perspective of the problem? Is such an inference valid? Could one, in general, construct

13 An excellent discussion on how the various methodologies can be used on the 
same problem and yield various solutions can be found in [Yau87].
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a DFD directly from a DSD or the reverse, a DSD from a DFD? This is a m atter for 

further research, although I conjecture the following two points:

1. This is not a possible transform ation since an analysis of the problem from one 

perspective is completely independent of the other.

2 . The intuitive argum ent regarding the validity of the inverse function above is not 

entirely correct because the function itself is not guaranteed to be unique.
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McGraw-Hill Book Company, New York, 1982.

[Pri87] Prieto-Diaz, Ruben, and Peter Freeman, "Classifying Software for
Reusability," in IEEE Software, Los Alomitos, California, January  1987, 
pp. 6-16.

[Pri88] Prieto-Diaz, Ruben, and Gerald A. Jones, "Breathing New Life into Old
Software," in GTE Journal of Sciences and Technology, Vol. 1, 1988, pp. 
152-160.

[Pyl81] Pyle, I.C. The Ada Programming Language. Prentice-Hall, Inc., Englewood 
Cliffs, New Jersey, 1981.

[Rae85] Raeder, Georg. "A Survey of Current Graphical Programming
Techniques," in IEEE Computer, Vol. 18, Number 8, August 1985, pp. 
11-24.

[Raj87] Rajlich, Vaclav. "Refinement Methodology for Ada," in IEEE Transactions 
on Software Engineering, Vol. SE-13, No. 4, April 1987, pp. 472-478.

[Ram86] Ramamoorthy C.V., Vijay Garg and Atul Prakash. "Programming in the 
Large," in IEEE Transactions on Software Engineering, Vol. SE-12, No. 
7, July 1986, pp. 769-783.

[ReA87] Reilly, Angela. "Roots of Reuse," in IEEE Software, Los Alomitos, 
California, January  1987, pp. 4-5.



www.manaraa.com

2 3 8

[ReS85] Reiss, Steven P. "PECAN: Program Development Systems tha t Support 
Multiple Views." in IEEE Transactions on Software Engineering, Vol. 
SE-11, No. 3, March 1985, pp. 276-285.

[ReS86] Reiss, Steven P. "An Object-Oriented Framework for Graphical
Programming (Summary Paper)." SIGPLAN Notices, Vol. 21, No. 10, 
October 1986, pp. 49-57.

[ReS87] Reiss, Steven P. "Working in the Garden Environment for Conceptual 
Programming," in IEEE Software, November 1987, pp. 16-27.

[Rom87] Roman, Gruia-Catalin, "Data Engineering in Software Development
Environments," in Proceedings of the 3rd International Conference on Data 
Engineering, Los Angeles, California, 1987, pp. 85-86.

[Rou83] Roussopoulos, Nick and Stephen Kelly, "A Relational Database to Support 
Graphical Design and Documentation," in Proceedings of Annual Meeting 
of Engineering Design Applications, San Jose, California, May 1983, pp. 
135-149.

[Rov88] Rovira, M argarita, Private Conversations, July-October 1988.

[Rov89] Rovira, M argarita, "Adapting Object-Oriented CAD Database Concepts for 
Computer Aided Software Engineering," Fall 1988 Research Summary, 
March, 1989.

[Rug86] Rugg, Tom, and Phil Feldman, Turbo Pascal Program Library. Que 
Corporation, Indianapolis, Indiana, 1986.

[Sal75] Salton, Gerard. Dynamic Information and Library Processing. 
Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1975.

[Sam87] Sam aras, George and Martin Hardwick. "User Manual for a VLSI CAD 
System Developed on ROSE," Department o f Computer Science, 
Rensselaer Polytechnic Institute, Troy, New York, 1987, pp. 1-24.

[Sha87] Shatz, Sol M. and Jia-Ping Wang, "Introduction to DistributedSoftware 
Engineering," in Computer, Vol. 20, No. 10, October, 1987, pp. 23-31.



www.manaraa.com

2 3 9

[Shi81] Shipman, D., "The Functional Data Model and the Data Language
Daplex," in ACM Transactions on Database Systems, Volume 6, Number 
1, March, 1981, pp. 140-173.

[Smi77] Smith, J . and D. Smith, "Data Abstractions: Aggregation and
Generalization," ACM Transactions on Database Systems, Volume 3, 
Number 3, 1977, pp. 105-133.

[Spo86] Spooner, David. "Advanced Database Management Topics," Class Notes, 
Rensselaer Polytechnic Institute, Troy, New York, September 1986- 
December 1986.

[Spo87] Spooner, David, and Martin Hardwick. "Using CAD Database Technology 
for Software Engineering: Research Plan," Research Plan for IBM  project, 
Rensselaer Polytechnic Institute, Troy, New York, June, 1987.

[Sid80] Sidle, Thomas W., "Weaknesses of Commercial Data Base Management 
Systems in Engineering Applications," in Proceedings of the 17th Design 
Automation Conference, New York, 1980, pp. 57-61.

[Sim86] Simon, Herbert A. "Whether Software Engineering Needs to be Artificially 
Intelligent," in IEEE Transactions on Software Engineering, Vol. SE-12, 
No. 7, July, 1986, pp. 726-732.

[Ste79] Stevens, W, G. Meyers and L. Constantine, "Structured Design," in
Classics in Software Engineering, ed. Nash Yourdon, Yourdon Press, 
New York, 1979, pp. 207-231.

[Sto84] Stonebraker, M., e t al. "QUEL as a Data Type," in Proceedings o f the 
International SIGMOD Conference, Boston, June, 1984, pp. 208-214.

[Sto87] Stovsky, Michael P. and Bruce W. Weide. "STILE: A Graphical Design and 
Development Environment," in Proceedings of the 22nd ACM/IEEE 
Design Automation Conference, Las Vegas, Nevada, 1987, pp. 247-250.

[SUN86] SCCS, "Source Code Control System," in Programming Utilities for the 
SUN Workstation," SUN Microsystems, Inc., Mountain View, California, 
February, 1986, pp. 71-90.



www.manaraa.com

2 4 0

[Swa87] Swaminathau, Ramesh , Jam es Loy, M.S. Krishnamoorthy, and Patrick 
Harubin. "On Animation Programs," Department o f Computer Science 
Technical Report Number 87-9, Rensselaer Polytechnic Institute, Troy, 
New York, March, 1987.

[Tay85] Taylor, Richard N. and Thomas A. Standish. "Steps to and Advanced Ada 
Programming Environment." in IEEE Transactions on Software 
Engineering, Vol. SE-11, No. 3, March 1985, pp. 302310.

[Tsi82] Tsichritzis, Dionysios C. and Frederick H. Lochovsky. D ata Models. 
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1982.

[Tur84] Turner, Ray. Software Engineering Methodology. Reston Publishing 
Company, Inc, Reston, Virginia, 1984.

[U1182] Ullman, Jeffrey D. Principles of Database Systems, 2nd. Edition. Computer 
Science Press, Rockville, M aryland, 1982.

[Van84] Van Dam, Andreis. "The Electronic Classroom: Workstations for 
Teaching." in Int. Journal o f Man-Machine Studies (1984) 21, 
pp.353-363.

[Was86] W asserman, Anthony I., Peter A. Pircher, Davud T. Shewmake, and
M artin L. Kirsten. "Developing Interactive Information Systems with the 
User Software Engineering Methodology." in IEEE Transactions on 
Software Engineering, Vol. SE-12, No. 2, February 1986, pp. 326-345.

[Was87] W asserman, Anthony L. and Peter A. Pircher. "A Graphical, Extendible 
Integrated Environment for Software Development." in SIGPLAN  
Notices, Vol. 22, No. 1, January  1987, pp. 131-142.

[Web88] Webster, Dallas E., "Mapping the Design Information Representation
Terrain," in IEEE Computer, Vol. 21, Number 12, December 1988, pp. 
8-23.

[Weg84] Wegner, Peter, "Capital Intensive Software Technology," in Special Issue 
of IEEE Software, Vol. 1, Number 3, July 1984, pp. 7-45.

[Wie87] Wiederhold, Gio. File Organization for Database Design. McGraw-Hill 
Book Company, New York, 1987.



www.manaraa.com

241

[Wir85] Wirth, Nicklaus. Programming in Modula-2. Springer-Verlag, New York,
1985.

[Yau86] Yau, Stephen S. and Jeffrey J.-P  Tsai. "A Survey of Software Design
Techniques." in IEEE Transactions on Software Engineering, Vol. SE-12, 
No. 6, June 1986, pp. 713-721.

[Yau87] Yau, Stephen S. "Relationship Between Data Engineering and Software 
Engineering," in Proceedings, 3rd IEEE International Conference on Data 
Engineering, Los Angeles, California, 1987, pp. 84.

[Yod83] Yoder, M. and Marilyn L. Schrag, "Nassi-Schneiderman Charts: An
Alternative to Flowcharts for Design," in Tutorial on Software Design 
Techniques, 4th Edition, ed. Peter Freem an and Anthony I. Wasserman, 
IEEE Computer Society Press, Silver Springs, Maryland, 1983, pp. 
506-514.

[You 75] Yourdon, Edward. Techniques of Program Structure and Design. 
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.

[You79] Yourdon, Edward and Larry L. Constantine. Structured Design:
Fundamentals of a Discipline of Computer Program and Systems Design. 
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1979.

[Zel87] Zelkowitz, Marvin V. "An Editor for Program Design," in U. S. Government 
Publication, Institute for Computer Science and Technology, National 
Bureau of Standards, Gaithersburg, Md, 1987, pp. 242-246.



www.manaraa.com

Index
A NEW DATA MODEL FOR CASE, 35 
A Sample Design Session, 151 
About the System, 149 
Accessing Design Data, 122 
Adding to the Interface Definition, 111 
Advantages, 163, 166, 169, 170, 171 
Allowable Values for Keywords, 115 
Alternatives, 215
An Approach to Design Data Capture, 101 
APPENDIX I: Prototype IDM Structure, 203 
APPENDIX II: Operations on the IDM, 207 
APPENDIX III: User Interface Issues, 221
APPENDIX IV: The Correspondence Between DFDs and DSDs, 224
Application-Oriented Organization, 141
Applying CAD Database Concepts to CASE, 4
Approaches for use with the IDM, 136
Approaches to CASE Data Models, 36
Approaches to Software Classification with the IDM, 117
Artificial Intelligence Techniques, 132
Associative Networks, 128
Attribute Search, 136
Calls, 211
Capture of Design Data, 166
CAPTURING DESIGN INFORMATION IN A CASE SYSTEM, 74 
Changes to the VLSI Model, 40 
Classification Matrix, 131
CLASSIFICATION OF SOFTWARE COMPONENTS, 109, 169 
Cluster Theory, 127 
Complex Objects, 19 
Conclusion, 196
Constraints, 207, 211, 215, 218 
Contributions, 7
Contributions of the Implementation, 195
Contributions to Software Engineering and CAD/CAM, 184
CONTRIBUTIONS TO THE FIELD, 181
Data Capture with the IDM, 104
Data Flow Design, 76
Data Model Requirements for Support of CASE and Software Reuse, 26 
Data Modeling in CAD and CASE, 5 
Data Structure Design, 79
Database Technology in CAD/CAM Applications, 17 
Decision Tables, 92
Dependencies of the Retrieval Techniques, 133
Design D ata Management in CASE Systems, 175
Desired Operations, 122
Details of the IDM, 47
Disadvantages, 164, 167, 169, 171, 172
Discussion, 132
DISCUSSION AND CONCLUSIONS, 200 
Economy of Scale, 172 
Engineering Data Models, 19

2 42



www.manaraa.com

24 3

EVALUATION OF THE IDM, 162 
Existing Systems for CASE, 176 
Faceted Schema, 130'
Finite State Machines, 91
For Archive Storage of Reusable Components, 33
For CAD/CAM, 179
For Capture of Design Data, 32
For Classification of Design Data, 32
For Retrieval of Design D ata for Reuse, 33
For Semantic Modeling of CAD Data, 28
For Semantic Modeling of CASE Data, 31
For Software Engineering, 180
Formal Definitions, 26
Formal Semantics, 112
Functional Decomposition, 75
FUTURE WORK, 197
High Level Design Methodologies, 75
High Level Design Methods, 95
HISTORICAL REVIEW OF SEMANTIC DATA MODELING IN CAD, 11 
Hybrid Models, 22
IMPLEMENTATION OF THE IDM, 149 
Indexing Strategy, 123 
Indexing Techniques, 124 
Interactive Ada Workstation, 177 
Interface Operations, 207
Introduction, 11, 12, 35, 39, 47, 58, 74, 89, 94, 101, 109, 117, 122, 136, 140, 149, 

151, 176, 181, 197, 207 
INTRODUCTION AND HISTORICAL REVIEW, 1 
IPO Charts, 87 
Levels of Abstraction, 173 
LITERATURE CITED, 226 
Low Level Design Methodologies, 89 
Low Level Mappings, 98
Mapping the Design Methodologies to Program Structure, 94
Matching Needs with Available Components, 133
Molecular Objects, 21
Multilist Index, 137
Multilists, 125
Object in a Field, 23
Object-Oriented Design, 85
Operations, 209, 212, 216, 219
Operations and Practice, 58
Operations on the IDM, 59
Operations on the Software Archive, 145
Organization Based on Retrieval Method, 142
Organization of Implementation Archive, 146
Organization of Software Libraries, 141
ORGANIZATION OF THE SOFTWARE ARCHIVE, 140, 171
Outline of the Thesis, 8
Overview of ROSE, 24
Overview of the Design Process, 151
Pecan, 177



www.manaraa.com

Practice, 63
Public Archives and Private Workspaces, 143 
RELATED WORK, 175
Relationship of the IDM to Object-Oriented Program Design, 72
Research Topics, 197
Retrieval of Software Components, 170
RETRIEVAL OF SOFTWARE DESIGN DATA, 122
Scalability, 34
Semantic Data Models for Design Data, 179
Shortcomings of Traditional Databases for Engineering Design Data, 17
Software Catalogues, 124
Software Classification Options, 110
Software Engineering and CASE, 2
Software Module as a  Static Object, 36
Software Reusability, 1
Software Through Pictures, 176
Standard Flowcharts, 89
Static Classification Schedule, 118
Storage of Design Data, 163
Structured Flowcharts, 90
The Alternative, 51
The Argument for Database Support of CAD and CASE, 11
The Call, 56
The Design Session, 152
The Extended Static Module Object, 38
The Functional Model, 23
The Hierarchical Model, 15
The IDM as a Partial Solution to Reusability in CASE, 162 
The Interactive Development Model for CASE, 39 
The Interface, 47
The Interface Definition of a Module, 110 
The Network Model, 17 
The Program Dynamic Structure Diagram, 103 
The Program Static Structure Diagram, 103 
The Relational Model, 13
To Archive Storage of Reusable Components, 194 
To Capture of Design Data, 191 
To Classification of Design Data, 192 
To Retrieval of Design Data for Reuse, 193 
To Scalability, 195
To Semantic Modeling of CAD Data, 184
To Semantic Modeling of CASE Data, 190
Traditional Data Models, 12
Use of Keywords for Software Classification, 113
Variable Keyword Lists, 119
Versions of Alternatives, 218


