
www.manaraa.com

INFORMATION TO USERS

The most advanced technology has been used to photo
graph and reproduce this manuscript from the microfilm
master. UMI films the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of this reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright m aterial
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re
produced by sectioning the original, beginning a t the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and white photographic p rin t for an additional
charge.

Photographs included in the original m anuscript have
been reproduced xerographically in th is copy. H igher
quality 6" x 9" black and white photographic p rin ts are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

U niversity M icrofilm s In tern ation a l
A Bell & Howell Inform ation C o m p a n y

3 0 0 North Z e e b R oad, Ann A rbor, Ml 4 8 1 0 6 - 1 3 4 6 U S A
3 1 3 /7 6 1 -4 7 0 0 8 0 0 / 5 2 1 - 0 6 0 0

www.manaraa.com

www.manaraa.com

Order Num ber 8026591

Object-oriented CAD database support for software reusability
in com puter-aided software engineering environments

Poulin, Jeffrey Scott, Ph.D.

Rensselaer Polytechnic Institute, 1989

Copyright ©1989 by Poulin, Jeffrey Scott. All rights reserved.

300 N. Zeeb Rd.
Ann Arbor, MI 48106

www.manaraa.com

www.manaraa.com

OBJECT-ORIENTED CAD DATABASE SUPPORT FOR

COMPUTER AIDED SOFTWARE ENGINEERING ENVIRONMENTS

by

Jeffrey S. Poulin

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

Martin Hardwick, Thesis Advisor

Mukkai S. Krishnamoorthy, Member

SOFTWARE REUSABILITY IN

Approved by the
Examining Committee:

David R. Musser, Member

Richard W. Phillips, Member

/ o '
David L. Spoorier, Member

Rensselaer Polytechnic Institute
Troy, New York

May 1989

www.manaraa.com

® Copyright 1989

by

Jeffrey S. Poulin

All Rights Reserved

www.manaraa.com

CONTENTS
Page

ACKNOWLEDGEMENTS .. xiii

ABSTRACT..xiv

1. INTRODUCTION AND HISTORICAL REVIEW ...1

1.1 Software Reusability ... 1

1.2 Software Engineering and CASE ... 2

1.3 Applying CAD Database Concepts to CASE•_............................. 4

1.4 D ata Modeling in CAD and CASE ... 5

1.5 C ontribu tions..7

1.6 Outline of the Thesis ...8

2. HISTORICAL REVIEW OF SEMANTIC DATA MODELING IN CAD 11

2.1 In troduction ...11

2.2 The Argument for Database Support of CAD and C A S E 11

2.3 Traditional Data M odels.. 12

2.3.1 Introduction ...12

2.3.2 The Relational M odel.. 13

2.3.3 The Hierarchical M o d e l..15

2.3.4 The Network M odel...17

2.4 Database Technology in CAD/CAM A pplications..17

2.4.1 Shortcomings of Traditional Databases for Engineering Design
D a t a .. 17

2.5 Engineering Data M o d e ls .. 19

2.5.1 Complex Objects ..19

2.5.2 Molecular Objects ... 21

2.5.3 Hybrid M odels.. 22

2.5.4 The Functional Model .. 23

2.5.5 Object in a Field ..23

2.5.6 Overview of ROSE ... 24

2.6 D ata Model Requirements for Support of CASE and Software Reuse26

2.6.1 Formal Definitions... 26

2.6.2 For Semantic Modeling of CAD D a t a .. 28

2.6.3 For Semantic Modeling of CASE D a t a ..31

2.6.4 For Capture of Design D a ta ... 32

www.manaraa.com

2.6.5 For Classification of Design D a t a .. 32

2.6.6 For Retrieval of Design Data for Reuse ...33

2.6.7 For Archive Storage of Reusable C om ponents......................................33

2.6.8 Scalab ility ... 34

3. A NEW DATA MODEL FOR C A S E ...35

3.1 In troduction ..35

3.2 Approaches to CASE D ata Models .. 36

3.2.1 Software Module as a Static Object ...36

3.2.2 The Extended Static Module Object ...38

3.3 The Interactive Development Model for C A S E .. 39

3.3.1 Introduction .. 39

3.3.2 Changes to the VLSI M o d e l...40

3.4 Details of the ED M ... 47

3.4.1 Introduction .. 47

3.4.2 The Interface ..47

3.4.3 The A lte rn a tiv e ... 51

3.4.4 The Call .. 56

3.5 Operations and P ra c t ic e .. 58

3.5.1 Introduction ...58

3.5.2 Operations on the IDM ...59

3.5.3 Practice .. 63
3.5.3.1 Action 1: Developing a Call .. 63
3.5.3.2 Action 2: Filling the Call- Searching for an In te rfa c e65
3.5.3.3 Action 3: Filling the Call- Searching for an Alternative . . .67
3.5.3.4 Action 4: Developing an In te r fa c e .. 68
3.5.3.5 Action 5: Developing an A lte rn a tiv e 70
3.5.3.6 Action 6: Developing Similar M odules.......................................71

3.6 Relationship of the IDM to Object-Oriented Program Design 72

4. CAPTURING DESIGN INFORMATION IN A CASE SY ST E M74

4.1 In troduction ... 74

4.2 High Level Design Methodologies ... 75

4.2.1 Functional Decomposition...75

4.2.2 Data Flow D e s ig n ... 76

4.2.3 Data Structure D esig n ..79

iv

www.manaraa.com

4.2.3.1 The Jackson Method ... 79
4.2.3.2 The Warmer Method ... 83

4.2.4 Object-Oriented Design .. 85

4.2.5 EPO C h a r ts .. 87

4.3 Lew Level Design Methodologies...89

4.3.1 Introduction .. 89

4.3.2 Standard F low charts ... 89

4.3.3 Structured F low charts ... 90

4.3.4 Finite State Machines ...91

4.3.5 Decision T ab les ..92

4.4 Mapping the Design Methodologies to Program Structure94

4.4.1 Introduction ... 94

4.4.2 High Level Design M e th o d s .. 95
4.4.2.1 Data F lo w ..95
4.4.2.2 Second-Level Factoring ...97
4.4.2.3 Data Structure ... 97

4.4.3 Low Level M app ings.. 98
4.4.3.1 Flowcharts ... 99
4.4.3.2 Structured Flowcharts ...99
4.4.3.3 Finite State Machines ... 100
4.4.3.4 Decision Tables ... 101

4.5 An Approach to Design D ata C a p tu re ..101

4.5.1 Introduction ..101

4.5.2 The Program Static Structure Diagram .. 103

4.5.3 The Program Dynamic Structure D ia g ra m 103

4.5.4 Data Capture with the EDM.. ̂ . 104

CLASSIFICATION OF SOFTWARE COM PONENTS... 109

5.1 In troduction..109

5.2 Software Classification O p tions.. 110

5.2.1 The Interface Definition of a Module ..110

5.2.2 Adding to the Interface Definition ...I l l

5.2.3 Formal Sem antics..112

5.3 Use of Keywords for Software C lassification..113

5.4 Allowable Values for Keywords .. 115

5.5 Approaches to Software Classification with the I D M117

www.manaraa.com

5.5.1 Introduction ..117

5.5.2 Static Classification Schedule..118

5.5.3 Variable Keyword L is ts ... 119

6. RETRIEVAL OF SOFTWARE DESIGN DATA ...122

6.1 Introduction... 122

6.2 Accessing Design D a ta ...122

6.2.1 Desired Operations .. 122

6.2.2 Indexing S tra te g y ...123

6.3 Indexing Techniques..124

6.3.1 Software Catalogues .. 124

6.3.2 Multilists ...125

6.3.3 Cluster Theory ..127

6.3.4 Associative Networks .. 128

6.3.5 Faceted Schema ... 130

6.3.6 Classification M a tr ix .. 131

6.3.7 Artificial Intelligence Techniques ...132

6.4 Discussion..132

6.4.1 Matching Needs with Available C om ponents.......................................133

6.4.2 Dependencies of the Retrieval T echniques..133
6.4.2.1 On the Classification S c h e m a ..133
6.4.2.2 On the User Interface .. 134

6.5 Approaches for use with the ID M ...136

6.5.1 Introduction .. 136

6.5.2 Attribute S e a rc h ..136

6.5.3 Multilist Index.. 137

7. ORGANIZATION OF THE SOFTWARE A R C H IV E ... 140

7.1 Introduction.. 140

7.2 Organization of Software L ib raries.. 141

7.2.1 Application-Oriented Organization ...141

7.2.2 Organization Based on Retrieval Method .. 142

7.2.3 Public Archives and Private Workspaces .. 143

7.3 Operations on the Software A rch ive .. 145

7.4 Organization of Implementation A rch iv e ...146

8. IMPLEMENTATION OF THE ID M ... 149

vi

k

www.manaraa.com

8.1 In troduction ... 149

8.2 About the System' ... 149

8.3 A Sample Design S e ss io n .. 151

8.3.1 Introduction ... 151

8.3.2 Overview of the Design P ro c e s s .. 151

8.4 The Design Session .. 152

9. EVALUATION OF THE IDM .. 162

9.1 The IDM as a Partial Solution to Reusability in CASE 162

9.2 Storage of Design Data ... 163

9.2.1 A dvan tages.. 163

9.2.2 D isadvantages... 164

9.3 Capture of Design D a t a ... 166

9.3.1 A dvan tages.. 166

9.3.2 D isadvantages... 167

9.4 Classification of Software Components ... 169

9.4.1 A dvan tages.. 169

9.4.2 D isadvantages... 169

9.5 Retrieval of Software Components ...170

9.5.1 A dvan tages ...170

9.5.2 D isadvantages..171

9.6 Organization of the Software A rc h iv e ..171

9.6.1 A dvan tages...171

9.6.2 D isadvantages..172

9.6.3 Economy of Scale .. 172

9.6.4 Levels of A bstrac tion ...173

10. RELATED W O R K ...175

10.1 Design D ata M anagement in CASE S y stem s... 175

10.2 Existing Systems for CASE ... 176

10.2.1 Introduction ...176

10.2.2 Software Through Pictures ...176

10.2.3 P e c a n ...177

10.2.4 Interactive Ada Workstation .. 177

10.3 Semantic D ata Models for Design D a ta ... 179

10.3.1 For CAD/CAM ... 179

vii

www.manaraa.com

10.3.2 For Software Engineering ...180

11. CONTRIBUTIONS TO THE F IE L D ... 181

11.1 In troduction ...181

11.2 Contributions to Software Engineering and CAD/CAM184

11.2.1 To Semantic Modeling of CAD D a ta ..184

11.2.2 To Semantic Modeling of CASE D a t a ... 190

11.2.3 To Capture of Design Data ...191

11.2.4 To Classification of Design Data ...192

11.2.5 To Retrieval of Design Data for R e u s e ...193

11.2.6 To Archive Storage of Reusable Components 194

11.2.7 To Scalability ..195

11.3 Contributions of the Implementation..195

11.4 Conclusion... 196

12. FUTURE W O R K ...197

12.1 In troduction ...197

12.2 Research T o p ic s ... 197

13. DISCUSSION AND CONCLUSIONS.. 200

APPENDIX I: Prototype IDM S tru c tu re ...203

APPENDIX II: Operations on the ID M ... 207

15.1 In troduction ...207

15.2 Interface Operations ... 207

15.2.1 C o n s tra in ts .. 207

15.2.2 Operations .. 209

15.3 C a l ls ... 211

15.3.1 C o n s tra in ts .. 211

15.3.2 Operations .. 212

15.4 A lternatives...215

15.4.1 C o n s tra in ts .. 215

15.4.2 Operations .. 216

15.5 Versions of A ltern a tiv es .. 218

15.5.1 C o n s tra in ts .. 218

15.5.2 Operations .. 219

viii

www.manaraa.com

APPENDIX III: User Interface Issues ... 221

APPENDIX IV: The Correspondence Between DFDs and D S D s 224

LITERATURE C IT E D ... 226

Index ... 242

ix

www.manaraa.com

LIST OF FIGURES

Page

Figure 1.1 Waterfall Model of the Software Lifecycle ...3

Figure 2.1 An Entity-Relationship Diagram of the University Database Example .14

Figure 2.2 University Example using the Relational Model .. 14

Figure 2.3 University Example using the Hierarchical Model 16

Figure 2.4 University Example using the Network Model ...16

Figure 2.5 A Recursive Design Object ...18

Figure 2.6 A Non-Disjoint Design Object ..18

Figure 2.7 Complex Object Description of a Shift R eg is te r..20

Figure 2.8 A Molecular View of a 4-input AND gate ... 21

Figure 2.9 A Circuit Described with QUEL as a Data Type22

Figure 2.10 A Functional Database E x a m p le ...23

Figure 2.11 The Four Types of AND/OR Trees ... 26

Figure 3.1 The Software Module as a Static O bject.. 37

Figure 3.2 The Two Roles of the Software In te r fa c e ..42

Figure 3.3 The Interactive Development M odel..44

Figure 3.4 Object Hierarchy .. 44

Figure 3.4 A Partially-Defined I/O System ... 64

Figure 3.5 A new Call I c o n .. 64

Figure 3.6 The New Call After E d iting ...65

Figure 3.7 MVS I/O System with New Call ...66

Figure 3.8 Binding an Interface to a C a l l ..68

Figure 3.9 Binding an Alternative to a Call ...68

Figure 3.10 The Resulting I/O Subsystem ..69

Figure 4.1 Data Flow Diagram sy m b o ls ...77

www.manaraa.com

Figure 4.2 First-level factoring.. 77

Figure 4.3 Leveling... 79

Figure 4.4 Structured Design N otation...80

Figure 4.5 Module Interface F o r m ... 81

Figure 4.6 Data Structure Diagram N otation... 82

Figure 4.7 Input and Output Data Structures... 82

Figure 4.8 The One-to-One Correspondence ...83

Figure 4.9 The Resultant Program S tru c tu re ... 84

Figure 4.10 A W arnier/Orr Diagram ...85

Figure 4.11 Object-Oriented Design Symbols ... 86

Figure 4.12 An Object-Oriented Design Diagram ..87

Figure 4.13 An IPO C h art.. 88

Figure 4.14 Standard Flowchart Symbols...90

Figure 4.15 Structured Flowchart Symbols ..92

Figure 4.16 Structured Flowchart Example ..93

Figure 4.17 A Finite State M achine.. 93

Figure 4.18 A Decision Table ..94

Figure 4.19 Second Level Factoring.. 98

Figure 4.20 DSD-to-Code Conversion Exam ple.. 99

Figure 4.21 Standard Flowchart Code Sequences... 100

Figure 4.22 Code for a Finite State Machine ... 102

Figure 4.23 Code for a Decision T a b le ... 102

Figure 4.24 Symbols for Sequence, Iteration, and S elec tion ..105

Figure 4.25 Icons for Calls, Interfaces, and A lternatives...105

Figure 4.26 Example PDS D iagram ...107

Figure 5.1 The Faceted Classification Schedule..114

www.manaraa.com

Figure 5.2 The RSL Classification Schedule ... 116

Figure 5.3 Describing a Module with a Keyword L i s t ..121

Figure 6.1 A Multilist Index ... 126

Figure 6.2 An Associative Tree for Software ... 129

Figure 6.3 A Faceted Schema In d e x ...131

Figure 6.4 A N atural Language Query Session ... 135

Figure 6.5 The Relative Importance of K e y w o rd s ..135

Figure 8.1 Screen Organization of the CASE T ool.. 150

Figure 8.2 The Development Tools in the CASE Prototype ..153

Figure 8.3 An Undefined Call ... 154

Figure 8.4 Search/Create C alls/In terfaces...155

Figure 8.5 Searching for a Sort Function ...156

Figure 8.6 IPO Chart for Integer Array Sort In te r fa c e .. 157

Figure 8.7 The Interface Icon for the Integer Array Sort ...158

Figure 8.8 Search/Create A lte rn a tiv e s .. 159

Figure 8.9 Scan V ersions... 159

Figure 8.10 IPO Chart of the Integer Array Sort Module ... 160

Figure 8.11 Resultant PDS Diagram ... 161

Figure 8.12 Resultant PSS Diagram ... 161

Figure 10.1 IDE Data Flow E d ito r .. 178

Figure 11.1 A Recursive C a l l .. 187

Figure 11.2 A Non-Disjoint C a l l ... 188

Figure 13.1 Sample Session with the CASE Tool.... ... 202

Figure A 1.1 Interface Object S tru c tu re ...204

Figure A1.2 Alternative Object Structure ..205

Figure A l.3 Call Object Structure .. 206

xii

www.manaraa.com

ACKNOWLEDGEMENTS

I gratefully acknowledge the significant contributions made by my thesis

advisor, Martin Hardwick, as well as the many invaluable contributions made by David

L. Spooner in the preparation of this thesis. Without the dedication and patience of

these two men, this effort would not have been possible.

I would also like to acknowledge and offer thanks to all of the members of my

Doctoral Committee. Particular recognition goes to Richard Phillips and Ronald Radice,

who have offered wisdom and encouragement for many years.

I also acknowledge the help of Margarita Rovira in providing many thoughts and

constructive criticism throughout the implementation phase of this thesis.

A special thank-you goes to my friends, family, and all those who encouraged

me when I was down, offered advice when it was needed, and pointed the way when it

was not clear to me.

For my grandparents, thank-you. I could not let you down.

Finally, throughout my life and through all things, there are two people who are

always there. To them, my parents, my love and gratitude is beyond words.

Sponsorship

This research was sponsored by the Fannie and John Hertz Foundation. Their

dedication to the advancement of applied physical sciences has provided educational

opportunities to m any students like myself, and in so doing, enhanced the defense

potential and the technological stature of the United States. Without their generous

contributions to this lofty goal, this research could not have taken place.

www.manaraa.com

ABSTRACT

There is currently a large research effort underway to develop new techniques

and methods for the efficient development of software. However, much of this effort

ignores the vast sum of knowledge that has been acquired through our experiences in

the field of engineering CAD, especially in the area of VLSI design. Much of w hat has

been learned in this area centers on database support for the design process, and in

particular, efficient object-oriented modeling techniques for software design data. It is

believed th a t the data model for software is a central issue surrounding the development

of CASE systems.

Recognizing tha t great gains in software productivity will be realized only when

software developed for one application is reused in subsequent applications, it is

necessary to consider ways to support reuse through the data model used in these

CASE environments. However, the reuse of software components is a complex problem

involving methods of capturing, classifying, storing, and retrieving the program design.

Unlike CAD, these issues are made additionally complex by the relatively abstract

nature of the algorithms and ideas tha t make up software, as well as the rather specific

textual representation of the end product.

Awareness of these reusability issues has led to the development of a new

object-oriented semantic data model for use in CASE environments. The proposed

semantic data model for software is based on the molecular object model used in CAD,

but has been enhanced to capture and support more of the software development cycle.

The model differs from the molecular object model in th a t where the molecular model

defines an object as being composed of only an interface and an implementation, this

model distinguishes between the interface used for defining an object and an interface

tha t is used to call an object.

x iv

www.manaraa.com

The most important consequence of this enhancement is in supporting the reuse

of software components. The comprehensive model structure incorporates a classification

and retrieval mechanism designed to help map conceptual requirements to existing

components in the software archive. This process is further accomplished by providing

the designer with specialized operations on the model that assist him in matching an

interface calling for service with an interface defined to provide th a t service.

xv

www.manaraa.com

1. INTRODUCTION AND HISTORICAL REVIEW

1.1 Software Reusability

The problem of reuse of existing software components is recognized as an issue

of major importance [Weg84, ReA87], and is crucial to the economical development of

large programs. However, software reusability is composed of a number of im portant

subproblems, including how to capture, classify, store, and retrieve the design data. The

management of software components in a CASE database and the automatic support

for software reuse is the subject of this thesis.

In software engineering environments the capture, or input, of program design

data is often accomplished through the use of interactive graphical design editors that

are based on data flow diagrams [Mye78], data structure diagrams [Jac75], structure

diagrams [You75], or similar schemas. The CASE system m ust extract the necessary

design information from these tools and editors. A CASE system dedicated to reuse will

store this design data according to various criteria, organizing the information in a

m anner consistent with the reuse process.

An important part of the data storage process is a mechanism for classifying

design data. Classifying software modules is necessary so that the database knows how

to store and access the modules comprising the program design. Much work has been

done towards the classification of software components [Pri87, Bur87], and this work is

often based on a keyword-style schema. However, while the classification of software is

not fully understood, a data storage model can make public certain features of the

design so that the program designer can readily store and access program components.

Any information related to the classification of these components m ust be included in

the database as part of the data storage model.

The classified software components are catalogued in a software library and

retrieved by means of indexing structures such as associative networks [Dep83], faceted

1

www.manaraa.com

2

schemas [Pri87], database joins over multilists [Wie87], or sequential catalogue listings

such as in the IBM software catalogue. Again, the method used for storage of the

program design will dictate the efficiency and ease with which the library components

are accessed.

The premise of this work is th a t a t the core of any CASE system there m ust

exist a semantic model for design data tha t addresses these issues of reusability. A data

model tha t meets this need and at the same time m atches the user’s conceptual view of

the design would make any CASE system that is based on the model efficient and

natural to use.

1.2 Software Engineering and CASE

Despite tremendous advances in the field of hardw are design and development,

the basic nature of computer programming remains unchanged. It is largely an

informal, person-centered activity which results in a detailed, formal product [Bal85].

This fact is both the cause and the effect of the fundamental problem of software

engineering; managing the knowledge-intensive software development process.

To m eet this need, various program design methodologies have been proposed.

These methodologies are m eant to guide the designer from the requirements of a

problem to a well-structured and documented computer program that solves it. Several

models, such as the waterfall model of the software lifecycle in Figure 1.1 [Phi88], have

been presented to help m anage the large numbers of people and other resources

involved in large software development projects. Automated tools have gradually been

developed to assist programming team s and m anagers to access and deal with the

influx of information. However, only recently is the utility and economics of combining

these tools into a comprehensive and integrated workstation-type environment being

realized.

www.manaraa.com

3

S y i l a m
(• o s lb l l l ty

V a lid a tio n

SoM«ora
p l a n t a n d
r t q u i r t m t n t s

V a t i d o t i o n

P ro d u c t d e s ig n

V e r i f i c a t i o n

D e ta ile d d e s ig n

V e r i f i c a t i o n

C o d e

U nit te s t

I n t e g r a t i o n

P roduc t
v e r i f i c a t i o n

Im p le m e n ta tio n

S y s tem te s t

O p e ra tio n s o n d
m a in te n a n c e

R ev a ild a tlo n

Figure 1.1. W aterfall Model of the Software Lifecycle

Software development workstations are part of what is known as

Computer-Aided Software Engineering, or CASE. The aim of these environments is to

reduce the administrative workload on the programmers and managers, provide tools

for the efficient design and coding of programs, and act as a central library for the

software that has been developed. Automatic knowledge-based assistants are often

incorporated into the CASE environment as well as specialized tools for documentation

and report generation. The end result is a programmer who is much more productive in

www.manaraa.com

4

term s of both the quantity and quality of the software produced.1

Progress in the field of CASE has been deliberate but slow. There has been a

call for more integrated systems tha t combine the tools available a t various stages of

the design process. However, a limiting factor with such systems centers on the efficient

manipulation of large quantities of design data as required by large software projects.

This problem is exacerbated by tools th a t require th a t design data be stored in a format

specifically adapted to tha t tool. However serious this may appear, it is not unlike the

problems faced by developers of CAD/CAM systems years ago. This realization leads us

to conclude th a t there may be a t least a partial solution to these software development

problems to be found in engineering design systems.

1.3 Applying CAD Database Concepts to CASE

Engineering CAD applications and designers have at their disposal a host of

tools to assist in the development of their products. The experience tha t these designers

have with CAD/CAM system s has demonstrated th a t good application tools contribute

greatly to the design process. With this in mind, recent work has been to develop

similar tools for software engineering. Early efforts in this area indicate th a t many of

the same advantages tha t were realized by the users of engineering CAD systems can

be found using a CASE system for the development of software. However, since the

software design process is less well understood than tha t of other engineering

disciplines, much work remains to be done.

One thing th a t has been explored is the benefits to using an underlying database

to organize the large quantities of data typically managed by a CAD environment.

However, many CAD tools have employed conventional database system s in this role,

only to discover th a t the relational data model on which they are based cannot

1 An excellent review of current CASE technology is found in [Dig88].

www.manaraa.com

5

gracefully represent engineering design data [Sid80]. It is necessary to view this data

as a set of design objects, and new models for design data based on this object-oriented

concept are being developed [Hel87].

In taking an object-oriented approach to model design data, it is necessary to

develop and utilize specialized databases for m anagement of these objects. If these

design tools supported by object-oriented database systems are to be effective, they have

to represent application data in a form that matches the user’s conceptual view of the

data. This requires that these tools be built around a semantic data model that is

appropriate for the application. Therefore, a t the core of these tools is a data model that

mirrors the design of the final product and assists in the process of design. This is

especially important in a CASE environment, where the abstract concepts related to

software development are much more difficult to quantify than in a traditional

CAD/CAM system.

1.4 Data Modeling in CAD and CASE

One data modeling method for CAD/CAM applications th a t is currently getting

widespread attention is the molecular object model [Bat84, Buc85]. This model takes an

object-oriented programming approach to design objects; each object has an interface

tha t defines the object for the outside world, and each object has an implementation that

specifies how the object is actually composed, or defined. The details of the

implementation are hidden from the outside world. The molecular model is partially

adaptable to CASE, but while it appeals to object-oriented design advocates, it is lacking

properties needed in a dynamic design environment dedicated to reuse.

W hat the Batory model lacks is flexibility enough for an incremental,

interactive, and evolutionary approach to design. This is because the molecular model

uses the interface in two ways, both to define objects and to "call" them. This dual role

makes the allowable operations on the interface overly restrictive. Furthermore, while

www.manaraa.com

6

the reuse of existing components is recognized as an issue of major importance, there is

no evidence of supporting reuse from the data modeling perspective. This is because the

Batory model hides implementation information from the designer even in cases when it

might affect the choice of available components. By distinguishing between interfaces

used to define objects and interfaces used to call for services, the data model proposed in

this thesis eliminates this problem.

An additional important function that the data model m ust perform in addition

to modeling design data is to provide efficient support for design queries and

modifications, system documentation, and any software engineering tools th a t need to

access the data. This is especially true when the design becomes large, as is the case

with large-scale applications programs such as operating systems. In this new data

model, the design of large scale systems is efficiently managed through a cooperative

effort between the data model and the strategies for classifying, storing, and retrieving

the data. Efficient access of the design data for operations and queries are managed

through the use of forward and backward reference pointers in the design objects that

allow the control flow, scope issues, and data dependencies to be modeled and stored in

a straightforward manner.

The data model in this thesis, termed the In te rac tiv e D evelopm ent M odel, or

IDM, is composed of three parts. The first of the parts is the interface, which defines a

software module. It consists of the common attributes of the alternative

implementations for the interface that are visible to the outside world. These attributes

not only help define the interface, but are also used to support reuse by serving to

locate appropriate interfaces in the software library for a given requirement.

The second part of the IDM is the alternative. The alternative is the

implementation of an interface, and defines a strategy for accomplishing the function

stated in the interface. An interface may have any number of alternative

www.manaraa.com

7

implementations; these are typically distinguished by a fundamental difference in

algorithm, language, etc.

The final part of the IDM is the call. The call is a request for service, and

consists of an abstract specification of a software requirement. Unlike the interface and

the alternative objects, the call does not define software modules; rather, it serves to

bridge the gap between the need for a function and components that are able to meet

th a t need. Specifically, the call object and its associated operations are used to develop

the abstract specification into a well-defined requirement th a t can be satisfied by a

particular interface and alternative. The call also serves to record the specification for

documentation of the design and for use during program updates and maintenance. The

call, therefore, is a flexible and powerful tool for the designer.

In order to validate the theory and ideas th a t have been incorporated into this

data model for software design, a prototype software engineering environment based on

this model has been developed. This prototype dem onstrates how the data model,

working together with a library of design objects representing reusable software

components, tackles the major issues of software reusability in a functional system.

1.5 Contributions

The major contribution of this research is the introduction of a new method for

modeling design data in a software engineering environment. This new data model, the

IDM, is unique in tha t it was developed primarily in response to an effective means for

supporting software reusability in these environments. The model is innovative in that

each of the major reusability issues of data capture, classification, storage, and retrieval

are inherently addressed by the model.

The issue of data capture is addressed through the creation of a new graphical

design tool and methodology for use with the IDM. Data classification and retrieval are

studied in detail, with several techniques developed and proven to be compatible with

www.manaraa.com

8

the IDM and a CASE system that is based on a philosophy of software reuse. Finally,

data storage in both the long term archival aspect and the more immediate design

database aspect are covered. An IDM-based organization for a software reuse library is

presented and shown to fully support distributed CASE systems. Of course, the

semantic structure of the design database is the focus of this thesis.

An additional and important contribution made by the IDM is clarifying the role

that the interface plays in object-oriented programming methodology. This model

stresses the fact tha t the implementation portion of a design object contains information

critical to determining an appropriate use for the object. The model further makes this

information available to the designer through the call portion of the design object.

While most semantic data models for CAD only support information related to

the final product, in addition to this capability the IDM provides a facility for the

development of requirement specifications through the use of call objects. This feature

allows the model to be used very early in the design process. Since the call object allows

modification of these requirements, it also supports system upgrades and maintenance

of the program. Furthermore, the model’s representation of the completed design is in a

language-independent pseudocode that is useful in numerous applications.

In summary, the reusability issues of software design capture, component

classification and retrieval, and information storage are integral parts of a CASE

system that is dedicated to increased software productivity through reuse. The three

part IDM makes a significant contribution to the field of design data modeling for CASE

by addressing each of these issues in a coherent framework.

1.6 Outline of the Thesis

This thesis concentrates on data modeling requirements for supporting software

reusability in a CASE environment. The major issues surrounding the reuse of software

components are addressed, and a viable solution is proposed. Chapter 2 of the thesis

www.manaraa.com

9

starts with a detailed review of traditional data models used in commercial database

systems. It follows with a synopsis of the advantages of applying database technology

to engineering design environments, and then provides a detailed discussion of current

CAD modeling techniques. The chapter concludes with an analysis of those elements

th a t are necessary for successfull data modeling in a CASE system for reusability.

Chapter 3 introduces the Interactive Development Model for CASE systems.

This chapter then gives a detailed view of the data model, including an overview of the

operations tha t are valid on the model and how the operations are used during the

design process. The chapter concludes with some comments on how this model affects

the object-oriented design methodology.

Chapter 4 is the first of several chapters devoted to the major issues

surrounding software reusability. This chapter concentrates on capturing software

design information in a CASE system, and reviews the major software engineering

methodologies in use today. The chapter concludes by introducing a new method for

design capture th a t meets the conceptual requirements of the software designer and also

corresponds closely to the constructs of the IDM.

Chapter 5 discusses the issue of classifying software components. Several

techniques are discussed, and, finally, a method based on keywords is detailed for use

with the IDM. Chapter 6 takes a look a t methods of retrieving software components

once they have been stored in the database system. Finally, Chapter 7 addresses the

physical organization of software archives and secondary storage considerations. The

primary problem of these software reusability issues is how to match an abstract

requirement with a component in the archive th a t may be able to meet the requirement.

Many classification, storage, indexing, and retrieval strategies are discussed, with

emphasis on selecting an appropriate approach for use with the IDM and determining

the ability of the IDM to function with such techniques.

www.manaraa.com

10

Chapter 8 gives an overview of an experimental implementation of the IDM in a

prototype CASE system. The CASE system is explained, and a sample design session

featuring the reusability tools built into the model is given.

Chapter 9 is a discussion and evaluation of how the IDM addresses the problem

of software reusability in a CASE environment. Each of the issues of data capture,

classification, storage, and retrieval is reviewed, and a conclusion is offered based on the

IDM and the issues and topics involved in semantic data modeling for software

engineering.

A thorough literature search is provided in Chapter 10, and is documented by

the references a t the end of the thesis. Chapter 11 presents the value of this research

in terms of contributions to the fields of software engineering and CAD/CAM. This

chapter also analyzes how the new IDM meets the data modeling and software reuse

requirements introduced in Chapter 2. Chapter 12 is on future work, and looks at some

areas th a t will require more research before a complete understanding of data

managem ent in software engineering environments is achieved. Finally, the thesis

concludes with a discussion and conclusion based on the findings of this research.

The appendices that follow the thesis body detail some of the important aspects

of the IDM as well as some related topics. Appendix I is a sum m ary of the data

structure used for the CASE prototype. Appendix II is a detailed description of the

operations valid on the model and the semantic constraints on those operations.

Appendix III discusses some findings on the related topic of user interface issues in

CASE systems, and Appendix IV expands on Chapter 4 by summarizing a substantial

body of work done in the preliminary phases of this research regarding the automatic

conversion of design diagrams to other forms of design diagrams.

www.manaraa.com

2. HISTORICAL REVIEW OF SEMANTIC DATA MODELING IN CAD

2.1 Introduction

Once the software design process begins, design data that has been entered into

the CASE system must be organized and stored. Since large engineering problems

typically involve enormous quantities of data, a major issue is the efficient managm ent

of this information. This problem was first faced by developers of CAD/CAM system s,

and now is being introduced into today’s CASE applications. Furthermore, while

databases are readily accepted as the tool to meet the data management need, there

further exists the problem of semantically representing the information in a form that

both the program designer and the database system could easily understand.

Before we can explore how some of these advancements can be used in CASE

systems, it is necessary to understand the issues and how they were handled by the

CAD/CAM designers. The following chapter provides a foundation for the topic of

database issues to CAD/CAM. It is a general discussion of concepts native to database

technology, and is oriented at the problem with which we are most concerned: semantic

modeling of engineering design data. First, the rational for using databases for the

management of CAD/CAM data is given. Second, the concept and purpose of a data

model is explained, followed by a review of traditional data modeling techniques. The

shortcomings of the traditional techniques are discussed and finally, current techniques

used for engineering design applications are presented. The purpose of this chapter is to

provide the historical and technical background for the introduction of the IDM for

software design.

2.2 The Argument for Database Support of CAD and CASE

As engineering CAD and CASE systems have developed, a t some point all have

had to address the problem of managing large quantities of design and administrative

11

www.manaraa.com

12

data. As the design and size of the project grows, so does the average response time for

basic operations. This dictates the need for efficient access to the design data for the

purpose of updates as well as for the generation of reports and other documentation.

Years ago, the developers of CAD systems realized the advantages of

capitalizing on readily available database technology to support this need, and applied

this technology in their application systems. Database features that were found

particularly useful were indexing of data files, standard query language capabilities, and

controls on access to data for concurrency and security reasons. Over the years, much

research has gone into applying this database technology to CAD/CAM applications.

2.3 Traditional Data Models

2.3.1 Introduction

The objective of a data model is to represent, as accurately as possible, the

fundamental real-world concepts th a t an organization or application uses. Therefore, a

data model is essentially a formalism that expresses the logical structure of data. This

formalism helps the database designer organize the problem space and then map his

problem to an appropriate representation in the computer.

One of the first and most fundamental concepts used in traditional data

modeling is that of the entity. An entity is usually an object in the real world about

which information is to stored, such as a person, place, or thing. An entity has an

associated collection of values, or attributes th a t describe the properties of the entity.

Attributes of a person, for example, may include the person’s name, address, and

telephone number.

The data model m ust also capture how the various entities in the world interact.

For this, the concept of the relationship is used. Typical relationships involving people

are married to and is boss of. By defining the entities in a system and the

www.manaraa.com

13

relationships between these entities, the database designer is usually well on his way to

understanding the nature of his problem.

In order to complete his understanding of these entities and how they interact,

the database designer outlines the system using a database diagram. This diagram, or

schema, is a structural representation of the information. Traditionally, there are three

different schemas used for database diagrams. These are the relational model, the

hierarchical model, and the network model. Each of these models has relative merits and

weaknesses, and is discussed in more detail below [Dat85a, Dat85b, Tsi82, U1182].

The example used to illustrate the three data models in the following sections is

based on a familiar university database application. In the university example, students

enroll for courses and receive grades for the courses taken. The entities in the example

are STUDENTS and COURSES. STUDENTS has the attributes of student number

(SNO), student name (SNAME), and student major (SMAJOR). COURSES has the

attributes of course code (CCODE), course name (CNAME), and course credit hours

(CHRS). The relationship between the entities STUDENT and COURSES is the

GRADES relationship. Since a student may take many courses, and a course is taken

by many students, there is a many-to-many, or N-to-N, correspondence between

STUDENTS and COURSES. This relationship is shown in the entity-relationship

diagram of Figure 2.1. In the STUDENTS-COURSES relationship, each student has one

letter grade (LGRADE) for each course. This example, as well as the associated

diagrams, are derived from [Pot88].

2.3.2 The Relational Model

From the user viewpoint, the relational model is composed of a set of tables

called relations. There is typically one relation for each entity and one relation for each

relationship in the model. There is one column in the entity relation for each attribute of

the entity. In the table for a relationship, there are columns to uniquely identify the

www.manaraa.com

14

GRADES

CCOOE CNARE CHRSL6RA0ESHARE SHAJORSNO

COURSESSTUDEHTS

Figure 2.1. An Entity-Relationship Diagram of the University Database Example

STUDENTS

SNO SNARE SRAJOR

S I Ron Comoutar Selanea
S 2 S u o n a th a m a t ic a
S 3 Kim C o m o u ta r S e ta n e a
S 4 Bob E la c tr ie a l E n g in aa rin g

COURSES

CCOOE CNARE CHRS

CS 101 F o r tra n 3
M 2 4 0 C alcu lu a 4
CS 2 1 0 O ota S t r u c tu r a 3
EE 2 2 0 C om outar A rc h lta c tu ra 3

GRAOES

SNO CCOOE LGRAOE

S I C S IO I A
S I M 2 4 0 B
^ 2 CS 2 1 0 B
S2 M 2 4 0 c
S2 EE 2 2 0 A
S3 CS 2 1 0 C

Figure 2.2. University Example using the Relational Model

entities involved in the relationship and additional columns to identify the attributes of

the relationship. Information is stored in the rows of the tables; each row is referred to

www.manaraa.com

15

as a tuple. In the university example, each student is uniquely identified by his student

number (SNO) and each course is uniquely identified by its course code number

(CCODE). These columns provide a key for the STUDENTS relation and for the

COURSES relation. Taken as a pair (SNO, CCODE), they form a key for the GRADES

relation. A relational schema for the university database is shown in Figure 2.2.

Most commercial databases organize their internal data structures in a

relational fashion. In this sense, the relational database has become the standard for

supporting traditional applications. This is because the relational model and the data

manipulation language used to query the relational database are relatively easy to

understand, implement, and use. It is im portant to note tha t when the next two

schemas are used in the design of database, they are often later mapped to a relational

schema in order to be implemented on a relational database system. This is not because

there do not exist very efficient hierarchical and network database systems, but is

because of the proliferation and popularity of the relational model.

2.3.3 The Hierarchical Model

The hierarchical data model is based on the belief that much of the real world

can be viewed as being organized in a hierarchical structure. A good example of a

hierarchical structure is the ordering of management positions in a large corporation.

Such a ranking of positions is usually depicted in a tree diagram, which quickly conveys

the relative positions of the members of tree.

The hierarchical model makes extensive use of the parent-child relationship

inherent in the model. This relationship is depicted by an arch in the hierarchical

diagram. As shown in Figure 2.3, higher-level parent nodes in the tree are connected by

arcs to lower-level child nodes. In this example, each course has two child relations. One

is a relation tha t lists all the grades indexed by the student numbers of the students

who received them. The other relation is a list of all the students who took the course.

www.manaraa.com

16

COURSES

STUOENTSGRADES

SNO LGRAOE SNO SNAHE

CCODE CHRS

Figure 2.3. University Example using the Hierarchical Model

STUOENTS - GRAOES SET
/ \

COURSES M>RADE£_SET_

/ COURSESSTUDENTS
/

CCODE CHRSSNAME SMAJORSNO

GRADES

SNO CCOOE LGRAOE

/ /
 /

L tg»nd

Io w n e r I

T
In c n o E r tt

Figure 2.4. University Example using the Network Model

One shortcoming of the hierarchical model is that there is no direct way to

represent many-to-many relationships in the diagram. This is because in a tree

diagram, no child may have more than one parent. This would create difficulty, for

example, in depicting the management structure of a company th a t used the matrix

organization, where an employee may report to one or several m anagers. In an

engineering application this would create difficulty if a subpart was used to construct

several assemblies.

www.manaraa.com

17

2.3.4 The Network Model

In the network model, entities are described by a record type definition, which

simply defines the name and the attributes of the entity. Relationships are described by

a set type definition. A set type is composed of an owner record type and a member

record type. Many-to-many relationships may be formed by allowing the sets to overlap.

As shown in Figure 2.4, the letter grade of the university example is owned by

the STUDENTS-GRADES and the COURSES-GRADES sets. By navigating through the

network via a data manipulation language, the LGRADE for a student (SNO) in a given

course (CCODE) is uniquely identified.

The prim ary advantage of the network model is the close correspondence

between the conceptual model and the physical implementation of the model. This

correspondence makes the system particularly efficient. However, it also makes the

model confusing from a user’s viewpoint because he must have a working knowledge

about the underlying network schema in order to navigate through the data.

2.4 Database Technology in CAD/CAM Applications

2.4.1 Shortcomings of Traditional Databases for Engineering Design Data

Although many VLSI CAD system s exist and have been supported by relational

databases, it is now well recognized th a t the standard relational database is inadequate

for modeling and storing design data [Bat84, Has82, Hel87, Sid80]. The reason centers

around the nature of the basic entity in an engineering design, the object.

The object in an engineering design is either recursive or non-recursive and

disjoint or non-disjoint [Bat84, Buch85]. Recursive objects are those that may have

sub-parts of the same type. As shown in Figure 2.5, an assembly is a recursive object

because it may be composed of other assemblies [Hard87c]. In the diagram an IBIT is

used to represent an instance of an object, and an RBIT is used to represent the

www.manaraa.com

18

ASSEMBLY
*

RBITIBIT

P A R T

Figure 2.5. A Recursive Design Object

l l s t - a Molecule

U s t- b Molecule

Figure 2.6. A Non-Disjoint Design Object

recursive part of the object; the AND/OR tree notation is explained in a following

section. A disjoint object is one tha t shares no sub-part with another object. An example

of a non-disjoint object is shown in Figure 2.6 [Bat84]. Representing design objects with

this recursive/non-recursive, disjoint/non-disjoint structure in a relational database is

extremely tedious and inefficient.

In addition to the difference between conventional business information and

engineering design data, there is the difference in the interactions that take place

between the designer and the computer, as well as the nature of the design process

itself. One example is the duration of a design transaction. Where a conventional

business database might access a record almost instantaneously, the engineer might

spend hours, days, or even months to work on a design object. Additionally, the

www.manaraa.com

19

designer quite often builds one object from a copy of another, with a desire to maintain

access to all versions th a t have been created. The designer might also desire the ability

to view different aspects of the design based on his decisions. Therefore, the design

database m ust not only support evolution of design objects from existing objects, but

maintain control over multiple versions of these objects, support multiple views of the

data in a design, and rem ain consistent over extended, or conversational transactions.

Conventional relational database system s do none of these things easily.

In view of all these differences, and the realization th a t relational databases

were not designed to m eet the needs of CAD/CAM applications, a new approach had to

be found. W hat was required was a semantic model for design data th a t maps easily to

the user’s m ental model of the design data and engineering process. This ease of

mapping means you can have a system th a t is easy to learn and use because the user

can work under the illusion that the computer actually understands the objects and

operations th a t he is thinking about [Hei87].

2.5 Engineering Data Models

2.5.1 Complex Objects

To meet the need for a powerful and straightforward representation of design

objects, complex objects and object-oriented database systems were developed [Lor83,

Plo84, Kim87]. Complex objects are hierarchical groups of tuples consisting of a root

tuple that represents a data object, and a set of dependent tuples tha t define the object.

Figure 2.7 is an example of 2-phase shift register and its complex object representation

[Kat85]. Note th a t the 2 Half-shift registers tha t compose the shift register circuit are

merely referenced in the implementation definition (composition) of the shift register and

are defined elsewhere. This series of pointers from parent circuit to child circuit are the

foundation of complex objects. As can be seen in the figure, complex objects can

www.manaraa.com

20

(T IM E M o t M ir 1 21.43.IS C O T IM 3)
(W IT H IN IR i i u u i 1.0) |R i | i t w r 2 0 | |
(IN T E R F A C E

(PO L Y G O N (0 0) (0 20) (20 20) (30 0))
(P O R T S

(LO CA L PO RTN A M E I t O IR E C T tO N I t p t l T Y P E 4:1 L O C A T IO N (0 101)
(LO CA L PO R TN A M E O t t D IR E C T IO N O t t p t i T Y P E G u t L O C A T IO N (1 0 I 0 | |
(G LOBAL PO RTNAM E P h il D IR E C T IO N I t p t i T Y P E 4:1 L O C A T IO N (S M il
(CLOB.AL PO RTNAM E P I C D IR E C T IO N I t p t l T Y P E 4:1 L O C A T IO N (IS M il

(D ESCRIPTIO N J p h u t O p t im a ih i f l n f m t r « *)
(PER FO RM A N CE (DELAY S 11) (A REA 43 t m BY 43 t m | (P O W E R 10 t > l)

)
(C O M P O S IT IO N

(IN ST A N C E 1 NAME H i U R i to l t r T R A N S L A T E D (0 01)
(IN ST A N C E • NAME H t l l R | t a u t T R A N S L A T E D (10 0 |)
(IN T E R C O N N E C T

((p In I | l O tlll
(|< l t | IS h illR f|n u tC < ll t i l l
| |p O u l) |S b if lR t |t l» rC « n O i l))
((> C tk l (S h if lR e tiilttC tll P h i III
|(p C lh l (S h iltR t|iiu tC < ll P h i3 | |

I
I
(R E P R E S E N T A T IO N)

I

PHII PHU

CLK

OUTIN
OUT

Figure 2.7. Complex Object Description of a Shift Register

succinctly represent the recursive, nondisjoint objects that the relational model cannot

easily handle [Bat84, Buc85],

The prim ary advantage of complex objects is tha t they offer flexibility for

implementation in that tuples may be clustered into relations or into objects. However,

for complicated multi-level data structures the structure of the object is difficult to see.

Also, the model contains very little semantic information. Although this makes the

model extremely flexible, it also makes operations loosely typed and the entire data

structure too open for interpretation.

www.manaraa.com

21

The Interface The Implementation

Figure 2.8. A Molecular View of a 4-input AND gate

2.5.2 Molecular Objects

An example of a semantic data model for VLSI design data that is based on

complex objects is the molecular object model. In this model, circuit objects are defined

to have two distinct parts, an interface and an implementation [Bat85, Kat85]. As

shown in Figure 2.8 [Pou89], the interface of an object consists of connections to the

outside world, and defines how other objects can use or access the design object. It

contains the common attributes of the existing implementations for that object. The

implementation of the object defines how the object does its job, and in VLSI is typically

made up of instances of subcircuits and the wires that interconnect them.

In the VLSI molecular model, a designer may refer to a subcircuit without

specifying an implementation for that subcircuit. In this case, the designer references

only the interface for the object. If the designer does not bind an implementation to this

interface, the interface is referred to as a socket in the design of the higher level circuit.

This socket must then be plugged with an implementation for th a t interface before the

design can be considered complete. The plug becomes an instance of the subcircuit in the

design.

www.manaraa.com

22

Circuit

NAME DESIGNER DATE SIMULATION LAYOUT

adder john 2/2/82 range s Simulation
retrieve (s.all)
where s.PID* 00001

range y Layout
retrieve (y.atl)
where v.PID* 00001

I/O bus mike 3/3/83 range s Simulation
retrieve (s.all)
where s.PID* 00002

range y Layout
retrieve (y.all)
where v.PID - 00002

ALU paul 4 /4 /84 range s Simulation
retrieve (s.all)
where s.PID* 00003

range y Layout
retrieve (y.all)
where v.PID* 00003

Figure 2.9. A Circuit Described with QUEL as a D ata Type

2.5.3 Hybrid Models

Hybrid data models are models th a t extend the relational model so th a t an item

in a tuple can contain an unusual type of data [Har85a, Tsi82], An example of such a

data type would be pointers to other relations, as is done in the Relational/Network

Model [Hay81]. The relations that are pointed to would contain further information

describing the object. However, unless rules restricting the typing of these pointers are

made a part of the implementation of this model, it suffers from the same lack of

semantics as does the basic complex object model. Another form of hybrid model is the

QUEL as a D ata Type model [Sto84], in which actual queries in the data manipulation

language QUEL are stored in the fields of a tuple. A conceptual example of this method

is shown in Figure 2.9 [Har85b]. These queries are evaluated when the field of the

tuple is referenced. However, since the results of this query are dynamic in the sense

tha t they are not evaluated until they are accessed, the actual composition of an object

is difficult to capture.

www.manaraa.com

23

DECLARE Student () —. ENTITY
DECLARE Nam* (Student) — STRING
DECLARE Dept (Student) Department
DECLARE Coune (S tuden t)C ourse
DECLARE Coune () —> ENTITY
DECLARE Title (Coune) — STRING
DECLARE Dept (Coune) • Deportment
DECLARE Instructor (Coune) Instructor
DECLARE Instructor () —> ENTITY
DECLARE Name (Instructor) — STRING
DECLARE Rank (Instructor) ■» STRING
DECLARE Dept (Instructor) •» Department
DECLARE Salary (Instructor) *» INTEGER
DECLARE Department () — ENTITY
DECLARE Name (Department) — STRING
DECLARE Head (Department)« Instructor

Figure 2.10. A Functional Database Example

2.5.4 The Functional Model

A functional data model is a binary modeling approach to problem space [Shi81].

The designer views the object in a somewhat mathematical sense, defining, modifying,

and accessing the data through a series of functions. An example of a database

definition using this method is shown in Figure 2.10 [Spo86]. Once a data value is

loaded into the database, it is retrieved by a query using the same functions. For

example, executing Department'John Sm ith’) might return 'Computer Science.’ The

major disadvantage of the functional model in CAD/CAM applications is that there is no

way to group related data into objects. This problem is compounded by the fact th a t this

model makes no distinctions between functions that link objects to their attributes and

functions that link objects to other objects.

2.5.5 Object in a Field

Object in a field approaches store all of the information describing an object in a

field of a tuple. This tuple can be conceptually viewed as a tuple in a relational table or

a tuple in a complex object. As a modeling technique, this approach is considered less

www.manaraa.com

24

flexible than the other techniques because it incorporates a much stronger data typing

mechanism. Fortunately, this is an advantage in software engineering environments,

where strong data typing is considered desirable. In addition, objects in a field are

particularly adept a t controlling the visible complexity of a database when objects have

a complicated multi-level structure. One particular object in a field approach that will be

discussed in the approach used by the ROSE engineering database system.

2.5.6 Overview of ROSE

ROSE is an experimental database system that provides graphics and user

interface tools for CAD applications [Har85a], ROSE is fast, m anages data clusters as

objects, and provides access to the database through a combination of powerful control

structures based on the ’C’ programming language and database commands that are an

extension of the relational algebra [Har87a].

ROSE stands for Relational Object System for Engineering. As the name

implies, ROSE combines some of the features of a relational database system with those

of an object-based system. As discussed above, while relational system s are efficient and

easy to use, these system s do not represent objects well. The solution adopted by ROSE

is to use a relational database not to store objects, but instead, to store information

about objects. In effect, ROSE uses a relational database as an index into an object

database. This has the advantage of employing the most effective organization for each

application; design operations are efficient because design data is clustered into objects,

and global operations such as searches are efficient because of the index provided by the

relational database [Har87b].

An additional reason for the speed and usefulness of ROSE in real-time

applications is tha t ROSE caches all of the information about a design session into main

memory, where it can usually be found in a single search. The ROSE system divides

main memory workspace into three areas. The first area is for the application program,

www.manaraa.com

25

the second area stores object data while the objects are in main memory, and the third

area is a scratchpad area used to store the results of computations.

Application programs for ROSE are written in a data manipulation language

tha t is similar to the programming language ’C.’ Constructs such as procedures,

functions, while loops, and if-then-else statements are provided. Object data is accessed

and modified through an extended relational algebra [Har87c]. Because of this, the

language is set oriented and strongly typed. The language is extended in the sense that

it provides special operators for accessing the recursive data found in engineering

applications [Har87c].

One strong argum ent in favor of using a system such as ROSE for a CASE

prototype is th a t ROSE features a very open architecture. Object data is saved

permanently in standard operating system files and directories where it can be viewed

and checked. Also, since ROSE is an interpretive system, new functions can be added

and the object base can be accessed without having to continuously recompile application

code.

Finally, data structures in ROSE are defined in an expressive AND/OR tree

format [McL83]. An AND/OR tree is a notation for representing the data abstractions

that commonly occur in design applications. Each node in an AND/OR tree defines a

domain for an object or one of its sub-objects; in other words, w hat makes up that

object. Figure 2.11 [Har87b] contains examples of these abstraction types. In the figure,

the AND nodes represent aggregation abstractions, in which a point is composed of both

an X-coordinate and a Y-coordinate. The OR nodes represent generalization abstractions

[Smi77], which says th a t a number is either of type INTEGER or of type FLOAT. An

asterisk under either type of node represents an association abstraction. In the figure, a

polygon is composed of any number of X,Y coordinate pairs, and a number collection is

composed of a list of numbers, each one of which is either of type INTEGER or of type

www.manaraa.com

26

point ' number

X Y INTEGER FLOAT
rod real integer real

Aggregation Generalization

polygon number.collection

X
real

Y INTEGER FLOAT
real integer real

Aggregation with Generalization with
Association Association

Figure 2.11. The Four Types of AND/OR Trees

FLOAT [Bro84].

2.6 D ata Model Requirem ents for Support of CASE an d Softw are R euse

2.6.1 Form al Definitions

A data model is a generic concept that defines the rules according to which data

is structured. This structure, however, does not provide a complete interpretation about

the meaning of data and the way it will be used; operations which are permitted on the

data also have to be specified. Finally, disallowed objects or relationships are excluded

by defining restrictions, called constraints, on the data structures and the valid

operations [Tsi82].

Formally, a generic data model GDM consists of three parts: a set of data

structures S ,2 a set of operations 0 on those data structures, and a set of semantic

constraints C. A generic data model can then be viewed as the three-tuple GDM = (S,

3Or, alternately, a set of generating rules G for the creation of data structures.

www.manaraa.com

27

O, C). In order to be classified as a database model, each of the elements in this tuple

m ust be addressed.

In addition to these components of a generic data model, a CAD data model

CDM also includes a number of other criteria. Formally, a CDM is the six-tuple CDM

= (GDM, C data, Cproc, Objcad, A, V), where:

• Cdata is the conceptual view of data, which in CAD is the molecular formula Cdata

= I n x lm , for Interface and Implementation, respectively.

• Cproc*s t îe concePtual view of design, which in CAD is a top-down, structured

process. Therefore, the structure S of each CAD object is viewed as a composition

of sub-object structures, or C proc = S e S’ x S” , where S’ and S” are complete

and independent sub-objects contained in and comprising S.

• Objcad *s the capacity to represent CAD objects, or, O b j ^ = Sd + Snd + Sr +

Snr, where the subscripts are disjoint, non-disjoint, recursive, and non-recursive,

respectively.

• A is multiple alternatives, or A = S e SxS .

• V is multiple versions, or V = S x T , where T is time.

A data model for use in a CASE system, CCDM, m ust be a CAD data model,

but m ust also include attributes unique to CASE environments. Therefore, a CAD data

model CDM e CCDM. Formally, CCDM = (CDM, L, DT), where:

• L is the set of structures containing the process data for the software lifecycle.

Formally, L = D ^ x D ^ x D ^ x . . . x D ^ x D ^ , where each Dx is the

process data D for a phase of the software lifecycle, from the feasability study

through maintenance.

• DT is the representation of data types internal to the program design,

DT e Objca<J.

www.manaraa.com

28

The preceeding discussion has also outlined a number of criteria th a t are unique

requirements for a data model in a CASE system supporting software reusability.

Therefore, a data model for reusability in a CASE environment RDM can be viewed as

the five-tuple RDM = (CCDM, G, Dclags, R, PL), where:

• G is the invertable mapping from design tools to objects G: DT -» S, where DT is

a design tool.

• Dc[ass is classification data. Furthermore, for every design object S there exists a

semantically well-defined mapping CLASS: S ■+ Dclass-

• R is the retrievability mapping R: D ^ -+ S.

• PL is the property of programming-in-the-large. PL addresses concerns that arise

when lim {S} for any software design consisting of a set of n structures S. For
n-*°°

large n, critical issues range from archival storage of design information to

efficiency of database operations and implementation.

In light of this definition of a RDM, fifteen points are identified and presented in

order to establish a basis for the evaluation of a data model. While the contents of this

list is debatable, it is representative of those qualities that this research has determined

to be highly desirable in CASE applications. The CASE/Reusability requirements below

are further presented in term s of their relationship to the five issues of reusability that

were introduced earlier. These are the issues of semantic modeling, design capture, data

classification, object retrieval, and long-term data storage. The fifteen requirements will

heavily influence the design of the IDM later in Chapter 3.

2.6.2 For Sem antic M odeling of CAD D ata

1. Model must mirror the designer’s conceptual view of data.

www.manaraa.com

29

Since the goal of a reusability-based CASE system is to increase software

productivity by reducing the need to duplicate development efforts, the model m ust

incorporate the concepts of reusable and interchangeable parts. Recent work in

CAD has shown that this feature is supported by conceptually separating design

objects into interfaces and implementations in the data model. This separation

allows the designer a black-box and a white-box view of the object, and allows him

to manipulate a design object without having to consider the details of

implementation. In addition, through these interfaces and implementations the

model m ust represent software concepts such as control flow, a major consideration

in the design of software systems.

2. Model must mirror the designer’s conceptual view o f the design process.

In CASE, as in CAD, design is an incremental process consisting of an

initial design, followed by m any product versions brought on by changing

requirements. It is also a structured process, consisting of recursively reducing

problems of large size into several self-contained subproblems of more manageable

size. This reduction can consist of a mixture of bottom up and top down techniques.

The CASE system and the data model must provide the capacity to design in

either of these methods.

3. Model must efficiently represent the object structures found in CAD.

For efficiency of operation, practical implementation, and conceptual

elegance, the data model m ust be able to represent the types of design objects

found in design systems. This includes the recursive, non-recursive, disjoint, and

non-disjoint objects prevalent in CAD designs. Failure to do so, as is the case with

the traditional data models, immediately disqualifies the candidate model for use in

www.manaraa.com

30

a CASE environment.

4. Model must allow multiple implementations/ configurations! and versions o f a design

object.

As discussed above, the design process is an incremental, evolutionary

experience. As any design evolves, numerous changes, updates, improvements, and

techniques will be tried. It is necessary to manage this history for many reasons,

most importantly for documentation of the design. Therefore, the model m ust have

a structure and semantics th a t support multiple alternatives and version control.

Most recent CAD data models have recognized and successfully met this need.

5. Model must allow ALL externally visible attributes o f a design object to be accessible

to the designer.

This is a deviation from standard object-oriented programming process,

where the internal details of implementations are universally hidden from the user.

However, for a model supporting a CASE system that is dedicated to software

reusability, implementation details are often critical to determining the suitability

of a module in a given application. This criteria is further discussed in Section

3.3.2. Many current object-oriented data models fail to support reuse on this point.

6. Each part o f the model should have a distinct boundary.

Distinct object boundaries are important in structured and object-oriented

programming, such as Ada,5 where "scope" rules are critical. Without

differentiating between the part of the design under a module’s influence and the

part of the design that should be under the module’s influence, the important

5 Ada® is a registered tradem ark of the U.S. Government, Ada Joint Program
Office.

www.manaraa.com

31

concept of scoping can be violated. A scope violation occurs when a module makes

a call or reference to either a subprogram or a variable th a t is not "visible," or

accessible to the module, according to the rules of the implementation language.

The distinctness of object boundaries is also critical in database systems for

efficiency of implementation. Without distinct boundaries, retrieval of a database

object may cause some or all of the objects that are referenced by the object to be

retrieved as well; this process could proceed indefinitely. In a model with distinct

boundaries, only those objects specifically needed for an operation are retrieved by

the database [Har85b],

2.6.3 For Semantic Modeling of CASE Data

7. Model must support all phases of lifecycle, from requirements through to maintenance.

In order to effectively support the front end of the software lifecycle, the

model should separate product requirements and constraints from the definitions of

existing components. This allows specifications developed during the planning and

initial design phases to be maintained as requirements, and later retrieved for

product documentation and maintenance. At the coding end of the lifecycle, the

model should maintain design information in an implementation independent form.

This allows maximum flexibility in applying the design to various source languages

and environments. Most current CAD/CAM/CASE systems and data models only

support the middle stages of the software lifecycle.

8. Model must be able to represent the complex data types that are prevalent in software.

CAD models that are capable of representing the design structures

described in requirement 3 are capable of also representing complex data object

types such are found in software. However, typical CAD semantic models ignore

these data type representations. This is due to the situation found in VLSI CAD,

www.manaraa.com

32

where interfaces are typically pin lists, and are connected to other object interfaces

by wires. Since there is only one type of data th a t travels over these wires,

namely sin electrical signal tha t can be in one of only two states, more complex

data representations are not addressed. In software, interfaces m ust pass data in

the form of records, arrays, and linked-lists, and other such complex structures.

The data model should explicitly provide a mechanism for representing the

exchange of this kind of data.

2.6.4 For Capture of Design Data

9. Model must be compatible with graphical design paradigms.

A major feature of CAD/CAM systems is the ability to reduce the amount

of text with which the designer m ust directly deal. Numerous graphical design

methodologies have been developed in order to do this. In order to do this, the

CASE system m ust monitor the actions in the graphical editors and affect those

actions with a clearly defined subsequent action in the database. For accuracy in

the design process, there can be no "guessing" in the data capture algorithms. The

operations used in the design process m ust therefore have a direct correspondence

with the operations on the data model.

2.6.5 For Classification of Design Data

10. The model must contain machine recognizable classification criteria.

The necessity of classifying design components in a CASE system for

software reusability is clear; you must be able to store and later find needed

components in the database. For reasons of efficiency, it is desirable to have the

classification schema included in the design information. The machine can access

this classification schema when storing the design objects, and then again when

comparing and locating objects during retrieval. For the widest possible application,

www.manaraa.com

33

the method used should be readily understandable by the general user.

11. The model must differentiate between the component definition schema and the

component requirements.

Current CAD models utilize database objects that define design components

in the additional role of defining needed services. However, this has two

shortcomings. First, a designer cannot change the structure of components in the

public library of reusable parts whenever a local requirement changes; the

integrity of numerous designs may be compromised. Therefore, the same database

object cannot adequately perform both functions. Second, a semantic conflict arises

during every access of a database object because the database system m ust first

determine the role of the object before operations on it may proceed.

2.6.6 For Retrieval o f Design Data for Reuse

12. Model must support object retrieval strategies that successfully locate reusable

components utilizing only abstract criteria.

Perhaps the most critical of the reusability issues is the problem of

retrieving an object when information about the desired part is incomplete or

innaccurate. Although many techniques have been proposed and many more are

the subject of current research, whatever strategy is desired m ust (1) be

supportable by current database systems, and (2) be supportable by the data

model.

2.6.7 For Archive Storage of Reusable Components

13. Model must be compatible with an archiving method that supports distributed CASE

environments.

www.manaraa.com

34

Most large-scale CASE systems are organized in a distributed fashion in

order to divide responsibility for the project as well as to maximize parrallelism of

effort. Normally, this kind of environment is supported by locating publically

accessible components in a central location, library, or archive, with development

work and partially-completed components stored a t local sites or private file

directories. Although generally dependent on the CASE system implementation, the

structure of the data model m ust be conducive to this concern.

14. Model must allow sharing of data among users in a distibuted CASE environment.

When many users are concurrently developing portions of a large project,

or are working on different versions of a design, it is necessary to allow them to

exchange their work in a controlled fashion. However, when sharing partially

completed designs, the model m ust gaurantee the integrity of approved data in the

archive. Privacy of local workspaces should also be protected. While not expressly

the domain of the data model, these concerns m ust be addressable in the context of

the data model.

2.6.8 Scalability

15. Each o f the data model requirements above must be viewed in the context o f being

efficient for large scale applications.

Any CASE environment m ust be capable of supporting a large scale

application. With this in mind, each of the reusability issues of data storage, design

capture, classification of components, retrieval of components, and organization of

a reuse library, m ust be viewed from a large scale systems perspective. Any data

model that cannot support a CASE system for programming-in-the-large is

inadequate.

www.manaraa.com

3. A NEW DATA MODEL FOR CASE

3.1 Introduction

The prim ary concern in choosing a data model for CASE is tha t it m ust address

the reusability issues of design data capture, classification, retrievability, and it m ust be

supportable by the underlying database system. The data model m ust also give

consideration to the practical requirements of implementation, and any possible

restrictions on access time and memory management.

This chapter s ta rts by discussing various data modeling options tha t were

considered for CASE; these options were implemented as part of this research and

found to be inadequate. A full explanation of the modeling methods that were developed

and investigated, as well as the shortcomings of each method, is given. Throughout the

process of developing an adequate data model, special attention is given to increasing

software productivity through the reuse of software components tha t have been

developed for other applications.

An analysis of the data models presented in the previous chapter reveals that

one model; the molecular object model, is especially promising for use in a CASE

system. However, this model needs modifications and enhancements before it can be

considered adequate. An explanation of why the VLSI model is of interest is given, and

details of the required modifications for application in a software development

environment are discussed. The conclusion is tha t due to the lack of an existing

semantic data model th a t meets all of the requirements facing CASE systems, a new

model m ust be developed for this purpose.

Following the explanation of the shortcomings of the molecular model in CASE

applications, a model based on the molecular object concept demonstrating good support

for the reuse process is introduced. This Interactive Development Model (IDM) not only

addresses the software reusability issues, but also is flexible and expressive for use in a

35

www.manaraa.com

36

CASE environment where program designs are constantly evolving and rapidly

changing. After giving an overview of the structure and theory of the IDM, a detailed

discussion of the model, allowable operations on the model, and semantic constraints on

the model are given.

1.2 Approaches to CASE Data Models

1.2.1 Software Module as a Static Object

The Software Module as a Static Object data model treats the software module

as a complete, autonomous entity, and provides semantics for defining the relationships

between modules based on how they are declared. A software module is considered to be

composed of a parameter list (interface), a list of the subprograms it declares, a code

section, and a set of administrative header information. Modules are indexed by a

surrogate tuple identifier (TID) that is assigned to each module and which is invisible to

the user. This static object model was implemented and extensively tested in the early

phases of this research, and is visually represented as an AND node in the AND/OR

tree of Figure 3.1 [Pou88a]. 1

However, while the Software Module as a Static Object model is sufficient for

describing a program as it looks on paper, it does nothing to convey the semantics of

how the program actually works. This dynamic program information m ust be derived

via an examination of the code portion of the module object and then determining from

this code which modules are called. The code portion of this model consists of text in a

pseudocode-style format, and does not provide a means for directly identifying modules

tha t are called, nor retrieving them from the design database by means of indices or

references.

‘AND/OR trees are described in Section 2.5.6 and the various types of
AND/OR trees are shown in Figure 2.11.

www.manaraa.com

37

Module

/ / . . . " T \ \
Header Parameter_list Module_list Code Coordinates

Figure 3.1. The Software Module as a Static Object

Also, the static object model necessarily restricts the nature of the design data it

provides and queries th a t can be supported. Since information on the dynamic activities

of the module is not available, valid queries are only those that are based on the

declaration structure of the program. Such queries include scope rules for module calls

or the number and types of param eters in the interface of the object. Queries pertaining

to control flow in the program cannot be supported.

There are several other shortcomings of this model. The first is that there is no

provision for version control, and no support for the evolution of one module from

another. The semantics of this model do not allow for multiple instances of a module

object to simultaneously exist, a criteria which would be necessary for multiple versions

and development histories to be supported. An additional shortcoming of the static object

model is that there is no basic functional or descriptive information stored as part of the

module object, making access for reuse difficult. This information is necessary both for

classifying the module as a functional unit, and then later being able to retrieve it for

use in another design. Finally, there is no way to represent or document the object

other than via the basic static structure tha t is stored in the model. Other views,

especially those tha t aim to convey the dynamic qualities of the program, are not

supported.

www.manaraa.com

38

3.2.2 The Extended Static Module Object

The Extended Static Module* Object model addresses the shortcomings in the

previous Static Object model th a t are associated with supporting multiple views and

design methods. The extended static module object does this by extending the static

model with the means to store additional documentation information. This additional

information describes how the modules reference each other (calling sequence) and how

the modules reference data (control block/common data access). However, this

information is stored in the model primarily for documentation purposes and is not

stored so as to be directly related to the information describing the static structure of

the program.

This enhancement to the static object model is aimed at solving only one of the

deficiencies experienced by tha t model; in particular, the problem of supporting a wider

range of views of the design data. However, this model still has no provisions for

version control or reusability, and for these reasons was found to be inadequate for use

in a software development environment where program designs are continuously

evolving and where the reuse of program code is desired.

For the enhanced model to address the problem of version control, a meta-object

for management of these versions m ust exist. This meta-object controls references to all

existing versions of a module. But since there is no place in the module for this

meta-object to be stored, it m ust be a self-contained entity outside the data model.

Furthermore, for the model to address the problem of classification and

retrievability for reuse, a classification schema must be stored as part of the model.

However, there are two problems with this approach. The first is th a t the semantics of

the static object are meant to model as closely as possible the textual representation of

a module declaration. There is no place for classification information in such a textual

declaration. The second problem is tha t if a classification schema was included in the

www.manaraa.com

39

model and used to find candidate modules for reuse, the search criteria would have no

place to be recorded in the object. For example, if a designer required a sort routine a t

some location in his design, he would query the design database for all modules with

that function. However, if the requirements later change, or if new versions of a sort

routine enter the database, the model does not allow the designer to "remember" the

nature of the original queries so tha t the query process can be repeated or modified so

that the best candidate routine can be found to m eet the new situation. This is

especially important during the maintenance phase of the software lifecycle, and is a

critical feature in a dynamic design environment where the design is constantly

evolving. Therefore, it is necessary to save the the requirement specifications in the

data model in order to search for reusable components and in order to m aintain the

design.

In order to address these important issues, it is necessary to divorce the

information common to a number of related modules from the information that makes

them unique. This is crucial for an efficient version control mechanism, since it reduces

the redundancy caused by storing information common to a series of versions. The

information common to each version further provides a central location to store

descriptive information that can be used to classify and retrieve old components for

possible use in new applications. As discussed below, further advantages are gained by

dividing module object information into several parts.

3.3 The Interactive Development Model for CASE

3.3.1 Introduction

In light of the above approaches and issues, the Interactive Development Model,

IDM, was developed and is proposed for modeling program design data in CASE

systems. In this model, the software module is again considered the basic design object.

www.manaraa.com

40

However, the module is semantically divided into three component objects tha t are each

tailored to the roles they play in program development.

The IDM is strongly influenced by the molecular object model of Batory because

of a natural correspondence between the molecular view of VLSI circuits and the

object-oriented view of software modules. First, there is the similarity between the VLSI

interface, which is composed of a list of pins, and the software interface, which is

composed of a list of param eters. Second, there is the correspondence between the VLSI

implementation, which is composed of gates, subcircuits, and wires, and the control

statem ents, calls to subprograms, and flow of control found in the implementation of a

software module. The IDM extends the two-part molecular model in order to fully

support the unique requirements of the software design process.

3.3.2 Changes to the VLSI Model

The molecular model needs to be modified for use in a CASE system in the

following ways. First, the concept of instantiation needs to be adapted to mean a

reference, and not a copy. Second, in the molecular model the interface of the object is

used in two distinct roles, one in the definition of the object and one in the definition of

a call to tha t object. It is advantageous to divide the interface portion of the data model

into two parts in order to accommodate this conflict.

Modification of the concept of instantiation is required in order to clarify the

notion tha t in the final software product, just as in the software design, only one copy

of a design object exists. Calls, or instances of the design object, are references to a

software module; during execution of the program a call to a module results in the

transfer of program control to the physical location of that routine. In VLSI design, an

instance of a design object is a reference to a single copy of the design specifications for

tha t circuit. However, in the final hardware product, every instance of a subcircuit in

the design results in a copy of tha t circuit being created and placed on the chip. This

www.manaraa.com

41

view of instantiation, which implies the creation of multiple copies of the design object,

is not appropriate for software.

The second change to the VLSI model involves the dual roles of the molecular

interface. The problem with the interface in the molecular model is th a t the interface

found in the declaration and the interface found in the module call are not the same,

and, in fact, have completely different functions. The difference in these two roles is

tha t the interface found in the declaration represents the object. Since it m ay represent

many alternatives and versions of that object, there are strict limitations on how the

user may modify the interface. The interface in the module call, on the other hand, is a

request for service. I t differs from the declaration interface because it evolves with the

design, and m ay not even represent a particular design object, especially early in the

design process. Since the details of the request may change as the design develops, the

second kind of interface should, in a sense, be more flexible, and be provided with

operations that help guide the designer towards satisfying the need for service. An

example of the two ways that a module interface is used is shown in Figure 3.2

[Pou89].

W hat typically happens is that when a designer needs a subprogram to perform

some function, he first searches the database for available routines. If he finds an

appropriate routine, he incorporates the interface for that routine into his design as a

subprogram call (what Batory would refer to as a socket). If not, he m ust design his

own interface, thereby creating a new object. However, since the molecular model treats

definition interfaces and request-for-service interfaces the same, the designer m ust fully

detail the required interface at this time. This is because by treating the defining

interface as common to many implementations, the molecular model necessarily places

a host of restrictions on how they can be modified later.

www.manaraa.com

42

The software interface in the module declaration:

Procedure SortfVar Variablel: Arm y(1..100] of integer;

Variable2: Boolean);

The software interface in the module call:

SortfInteger_array, Error_flag);

Figure 3.2. The Two Roles of the Software Interface

W hat is needed is a meta-interface th a t provides a place for the designer to

sketch the requirements for a subcomponent without the need to know exactly w hat he

wants. A new object type, the call, is introduced to meet this need. The call not only has

a much more flexible set of operations to allow the interface to evolve, but it also has

an associated set of descriptive keywords and performance constraints th a t the designer

may use to assist in selecting available components to fill the socket.

The resulting three-part model for software, termed the Interactive Development

Model (IDM), is shown in Figure 3.3. The interface portion of the IDM is used

exclusively to describe software modules, and plays the definition role of the molecular

interface, as shown in Figure 3.2. The interface is composed of those components of the

software module tha t are common to the various implementations of the module, and

which may be needed by a program designer to select the module for use in a particular

application. The alternative portion of the model is also used exclusively for describing

the software module; however, the alternative defines the code and other

implementation details of the module. In order to allow the existence of true alternative

implementations, any number of this type of object may exist for a given interface. The

final portion of the IDM is the call. This object represents a request for service, as

www.manaraa.com

43

discussed above. However, in describing the request for service in a sufficiently abstract

way, the call bridges the gap between requirements and any object available to meet

those requirements.

Each object in the IDM is a hierarchical composition of a number of

sub-elements that help the object accomplish its role in the data model and in the design

process. The "Header" contains the object name as well as other administrative

information about the object. 5 The "Description" in the interface and the call portion of

the object consist of general comments and a set of keyword identifiers. These fields

describe the object and what is needed of an object. The performance constraints in the

module call correspond to the performance attributes in the module implementation and

are used to describe the requirements of a given call and how well a given alternative

meets those requirements. Control of versions and alternatives is via association

abstractions, "Version list" and "Alternative list," located in the module alternative

and module interface. The relationship between interfaces, alternatives, and versions is

depicted as an object hierarchy in Figure 3.4. A module is defined by a single interface.

This interface may have any number of alternative implementations, and each

implementation may have a history consisting of several versions. Further details on

the composition of these fields and the exact function of each is given in Section 3.4,

Details of the IDM, as well as in later chapters.

The addition of the call object to the molecular data model has an important

consequence for the reuse of design objects. Because there are criteria in each portion of

the IDM available to link requests for service with routines potentially able to meet

them, the filling of module calls (sockets) should and can be automated. In many cases

this may even be left until the design is compiled or validated. At that time, the

program that compiles the design will have three sets of criteria on which to base the

5 In some programming environments the "Header" is referred to as the module
prologue [Fra87].

www.manaraa.com

44

For Module Declarations:

Interface

/ / ' \ \
Header Description Parameter..! ist AIternative_list

For Module Implementations:

Alternative

/ \ - - - - K
Header Declarations Version_list Performance_Attributes

For Module Calls:

Call

Description Parameter_list Performance ConstraintsHeader

Bound AlternativeBound Interface

Figure 3.3. The Interactive Development Model

Implemen
tation

.Interface Version

Figure 3.4. Object Hierarchy

selection of an appropriate implementation for the call. First, the initial description of

the call provides keywords that partially identify an interface. Second, the param eter

www.manaraa.com

45

list in the call is compared with the parameter lists in the potential interfaces in both

number and type of param eters. At this point, if there are candidate routine(s), an

interface for the call is identified, or a t a minimum narrowed to a few choices that the

designer m ay easily browse. Finally, the performance constraints specified in the call

are matched against the performance attributes of the implementations for the identified

interface in order to provide a final selection of implementation. A detailed analysis of

the design object retrieval and how the IDM addresses this issue is found in chapter 6.

The call object has the further advantage in that it allows software requirements

to be stored as part of the program design data. No other semantic model for CAD has

this feature. By storing software requirements as part of the data model, the designer is

able to develop requirement specifications using the same methods tha t he uses a t lower

levels of design. This makes the model conducive to use from the initial problem

statem ent through to the final coded program, providing the capability for a consistent

"look and feel" at all levels of design. While software requirements m ust be saved for

documentation of the design, they can also be used during the maintenance phase of the

software lifecycle to update requirements and find new reusable components to meet the

evolving needs.

The matching of constraints with performance criteria and the use of dynamic

binding of calls to interfaces, alternatives, and versions, makes the IDM particularly

effective for an evolutionary design process. Through the IDM it is possible for objects

filling a call to be referenced explicitly as a specific reference, or implicitly by

dereferencing what is called a generic reference according to some specified or default

criteria. For example, a software module that calls another routine may reference a

specific version of the routine by number, or it may be left as an implicit reference, in

which case a version will be bound to the module call a t a later stage of design or

implementation. The decision as to w hat version is to be bound will be made according

www.manaraa.com

46

to the constraining criteria, such as memory space limitations, algorithm speed

requirements, or which version is designated the current version.

The "Bound" Field in the call portion of the data model allows the designer to

remember an interface or implementation once he has located one in the reusable

software library that will fill the call. The designer has the option to make this

assignm ent perm anent or temporary. A temporary assignment would be used, for

example, if he always wanted to fill the call with the latest version of an

implementation. Each time the program design is evaluated for the purposes of design

updates or compilation, the last version by date of an alternative would be

automatically used to fill the call. A permanent assignment would be warranted if, for

example, he always wanted V I.2 of "Binary sort." When a permanent assignment is

used, no automatic binding during evaluation of the design takes place.

The advantages of an automatic binding capability were recently put forward in

[Bee88]. Dynamic binding gives the designer the option of leaving an abstract

specification in the design, with the assurance that it will always be filled with the most

appropriate module available in the software archive. These advantages of dynamically

binding design objects to sockets have also recently been recognized by Dittrich and

Lorie [Dit88]. Their solution defines "environment" characteristics th a t are used a t run

time to qualify candidate objects for sockets. These characteristics are stored as global

information in the database. However, it is felt that it is better for conceptual clarity to

incorporate this and all other design-related information directly into the design data.

This keeps all the information related to objects utilized in a design physically as well as

logically in one place.

www.manaraa.com

47

3.4 Details of the IDM

3.4.1 Introduction

This section expands on the general discussion of the IDM model found in the

previous section. I t is a detailed explanation of the IDM data model and the rational for

the various information contained in it. Implementation-specific details are not included

in this discussion, except when, for demonstration purposes, it is advantageous to

provide an example of a sample schema. The notation used for the data structures in

this section is the And/Or tree, as described in Figure 2.11.

3.4.2 The Interface

The interface of the module serves to define the module object to potential users.

It consists of the information common to all of the available alternative

implementations. For the most part, once the interface is created, it cannot be modified,

since changes to the interface would affect all of the implementations and could have

unpredictable consequences. Therefore, significant modifications, including deletion, are

only possible if there currently exist no implementations for the interface. A description

of the valid operations on the objects that comprise the IDM and semantic constraints

on these operations are discussed more fully later in this section.

www.manaraa.com

48

Interface

i 7
Int_Hdr_Info Description Parameter_list Alternative_list

Int Hdr Info

Int_Name Tag Date Designer

The interface header information, "Int Hdr Info," is a composite of

administrative information about the interface. For demonstration purposes it consists

of the interface name, the name of the designer who created the interface, and the date

that it was created. A commercial implementation of the model would include much

more detail about the administrative data of the interface. The "Tag" is included as a

synonym for the object, and may be used in place of the interface name when no

conflict with other objects exists. The tag field serves a similar function for other objects

in the IDM.

www.manaraa.com

49

Description

Comment Keywords

- A
File_name Sentence

Keywords

~h ” / " -/- \ — \ ~ - \
Function Input Output Medium Language Environment

The "Description" of the interface is composed of comments and a series of

keywords. These keywords are used to give a general description of the interface for

classification purposes, and are used as search keys for retrieval in a reuse situation. A

full discussion of the software classification issue and the use of keywords for

classifying software components is found in a later chapter. For demonstration

purposes, the keywords shown here are "Function," "Input," "Output," "Medium,"

"Language," and "Environment."

Comments are an unrestricted tool for documenting the object; every "Comment"

in this example is shown as having two parts. One part is a short sentence describing

the design object, and the other is a pointer to a text file where the user may store any

documentation, diagrams, or data necessary.

www.manaraa.com

50

Parameter list

Parameter

y v
Variable Local_Name Direction

The "Param eter list" is an association abstraction of param eters; any number

of param eters m ay compose this list. Each parameter is a variable, and has a field for

the direction tha t it passes information, in or out (or both in and out) of the module. The

"Local Name" for a param eter is used to record the name of the variable in the

module; the name of the param eter a t the point of call is the name of the variable

comprising the parameter.

Variable

/ / / A \ \
Name VID Tag Comment Declared_by Used_by Type

Alt_Name
Type

*

-A
Field Composition

Variables all have a name and a comment describing the intention of the

variable. Each variable that is declared in the program design is unique, and is

identified by a variable identifier (VID), which is surrogate tuple identifier for variables.

Variables also are of a certain data "Type." The type of data may be a basic type such

as integer or Boolean, or it may be a compound type composed of one or several fields,

www.manaraa.com

51

such as a control block or PASCAL record. The variable "Type" is therefore shown as

an association abstraction of "Field," which is the name of the field, and "Composition,"

which describes the field. A field may be a basic type or another type, which creates a

recursive structure in the object. There are also backward and forward references,

"Declared By" and "Used By," that record where the variable is declared and where

it is used, thereby allowing efficient queries and fast access during design operations.

"Used By" is an association abstraction, indicating that the variable can be used in a

number of different alternatives of a module.

Alternative_list
«r

Alt_Name

The "Alternative list" provides links to all of the alternative implementations

for this interface. These links are keys used to index the implementations for the

interface. The list may be empty, for example if the interface is newly created.

However, for a design to be complete, every module interface in the design m ust have

at least one alternative implementation in existence.

3.4.3 The Alternative

The purpose of the module alternative is to define one way of performing the

function specified in the interface. The alternative implementation itself is composed of

the information common to all of the versions of the interface. A version is stored via

an association abstraction in the "Version list" field of the alternative object. In order

to access a full alternative, the interface name, alternative name, and version number

must be specified. If no version number is given, then the version for the alternative

that is labeled ’current’ is retrieved.

www.manaraa.com

52

Alternative

/ -----------------------
Alt_Hdr_Info Declarations Comment Performance Version_list

Alt_Hdr_Info

/ ' ! / ■ \ — S A
Alt_Name Int_Name Tag Declared_by Date Designer

Some of the fields in the alternative object are the same as those in the interface

object and will not be explained again here. Of the remaining fields, the alternative

header information, "Alt Hdr Info," is essentially the same as th a t for interfaces,

with two differences. First, the "Int Name" field provides a backward pointer to the

interface for the alternative. This allows the interface information to be stored in

exactly one place, rather than requiring a copy of the interface be maintained in each

alternative object. The "Alt Name" is the name of the implementation for the

interface. This field, together with "Int Name," serves as the key for the alternative

object in the database.

The second difference is the "Declared By" field, which is a backward pointer

to the point of declaration for the alternative, needed to make queries of the type

"Where do you come from?" The field is analogous to the with clause of Ada [Pyl81, pp.

77-78], in tha t it determines the source of the object code that comprises the module.

www.manaraa.com

53

Declarations

Subprograms Variables
* *

Alt_Name VID

The "Declarations" consist of a list of subprograms, stored as alternative names,

and a list of local variables. Alternative names are stored so that scope rules can be

checked and enforced, for example, if the designer attempts to call a module that is not

visible to the calling module. The declarations for variables are also used to enforce

scope requirements. Notice that a variable which is local to a module is considered

accessible to any of the subprograms declared by that module, according to the rules of

a structured programming language. Variables that are global to the entire program are

declared as local variables in the implementation of the main routine. This also provides

a mechanism for the declaration of global data blocks, common data areas, and external

Hies.

www.manaraa.com

54

Version List

Version

/ / ' J ~

Version_No History Representations Code

Representation

Date Who What Why Approval_date Approved_by

As mentioned above, version control is managed through the association

abstraction of "Version list" to the existing versions of the alternative. Each version

associated with an alternative has a unique version number, code, and modification

history tha t documents who, how, and why it was created. Through the version history

the evolution of the alternative implementation can be traced. There are also

"Approval Date" and "Approved By" fields for the validation of the design: these

must be dated later than the modification date for the design to be considered

consistent. The "Representations" are intended to support multiple views of the module

by providing alternate documentation techniques to design or document the alternative.

This field is therefore shown as an association abstraction of "Representation;" it is not

further developed here.

www.manaraa.com

55

Code

LOC

/ \
CID Type Condition

The "Code" portion of each version captures the fundamentals of w hat the

module does. Since the EDM seeks to be source language independent, the data structure

above models only the three basic programming constructs in structured programming

according to [Dij79]. In the IDM, the code of a software module consists of any number

of individual lines of code, as represented by the association abstraction from "Code" to

"LOC." Each code statem ent consists of three parts; an identifier stating the type of

code construct, a call object identifier, and a condition for the call. The three basic code

constructs of sequence, iteration, and selection are represented by "Type." The call

object identifier, "CED," references a call object that is the abstract specification of the

needed function or requirement. The "Condition" of the code statem ent is used only if

the statem ent is an iteration or selection construct; it is the Boolean condition tha t

determines if the statem ent is executed. In a commercial system this field would

reference a variable in the database, and be subject to consistency checks on the scope

and type of the variable referenced.

Performance

Component Version Time Space

Finally, the performance attributes of the alternative are recorded to describe

the object in enough detail to provide criteria for selecting an appropriate alternative

www.manaraa.com

56

implementation for use in a call. These performance attributes correspond to the

performance constraints that the designer specifies while developing the module call.

For demonstration purposes these performance attributes are shown to be "Time"

complexity, "Space" required, the current "Version," and the logical "Component" that

the alternative is a part of in the overall program design. Examples of logical

components in an operating systems environment are the Dispatcher component, the

Scheduler component, and the Paging component.

3.4.4 The Call

The purpose of the call is to provide a scratchpad area to develop an abstract

service request and to provide database query facilities to assist the designer in the

search for reusable components to meet that request. The operations available on calls

are therefore very flexible and quite extensive. The call also records software

requirements as they are defined at design-time for documentation purposes. It is

important to note th a t the data structures shown here only outline the information that

would be recorded in an industrial implementation of this model, especially considering

that the call has a very important function as a requirements documentation tool.

Call

f=~r — v ^ = \
Call_Hdr_Info Parameter_list Description Performance Plug_Info

It is important to note that the call object does not define software components.

That role is accomplished by the interface and alternative objects. The function of the

call is to bridge the gap between requirements and components available to m eet those

requirements. With this in mind, the major parts of the call object all play an important

function in the reuse process. The keywords in the call "Description" are used to tell

www.manaraa.com

57

w hat is generally needed in the service, and are used by the system for an initial

search of available interfaces. The process of locating candidate components then

continues, using the other information comprising the call object. The needed

"Param eter list" is compared with the param eter list of the retrieved interfaces for

possible matches. Finally, the designer uses the "Performance" constraints to place

restrictions on the performance attributes of the alternatives that may be used to fill

the call. I t m ust be emphasized tha t in the call, the values of the keyword attributes

constrain the interfaces and alternatives that may be used to fill the call.

Call_Hdr_Info

/ 7 / V \ \
CID Call_Name Tag From Date Designer

The header information for the call object is similar in many respects to the

administrative information th a t is maintained for the interface and alternative objects.

Like those objects, the call has a name that it is known by, as well as a shorter name,

for the same purpose. However, since each call m ust remain unique in the design of a

program, the database system assigns a surrogate tuple identifier for that purpose,

called the call identifier (CID), to each call object. The "CID" is used to index and

retrieve the calls from the database. The final addition to the call header is the "From"

field. "From" is a backward pointer to the alternative that instantiated the call. This

field makes it possible to efficiently retrace the flow of control sequence in a program.

www.manaraa.com

58

Plug_Info

/ / V \
Int_static Bound_Int Alt_Static Bound_Alt

With the exception of the field "Plug Info," all the other fields that comprise

the call object have been explained. "Plug Info" is used to record the keys of the

interface and alternatives used to plug the call once this information has been

determined. As indicated, the user may elect to make this assignment permanent. If

this is the case, the "Static" fields are set to the Boolean condition true, and the

interface and alternative that are bound to the call are recorded in the "Bound" fields. If

the "Static" fields are false, then final determination for binding these fields will be

made dynamically when the program design is evaluated.

3.5 Operations and Practice

3.5.1 Introduction

This section provides a synopsis of the valid operations on the IDM and a few

examples of how these operations combine to perform basic software design steps.

The purpose of this section is to illustrate how the model supports the software

engineering process and software reusability. A complete and detailed discussion of the

valid operations is given in Appendix II. As part of that discussion, a full analysis of

the semantic constraints on the model th a t m ust be enforced throughout execution of

the operations is given. The concise description of the operations shown on the next

couple of pages is provided as an introduction and quick reference for the activities that

follow. The activities shown represent common activities during the design process, and

were carefully chosen to illustrate how many of the IDM operations are utilized to

accomplish these activities.

www.manaraa.com

59

The complete ROSE implementation of a CASE system based on this data model

includes several graphical editors for design data input, a combination of pull-down

menus and text-entry boxes, and mouse-driven icons. These interface features are

techniques designed to assist the designer as he interacts with the system and uses the

reusability features th a t are built into the model. A description of the prototype CASE

system as well as a sample design session is given in chapter 8. The activities described

below are given in an implementation-independent format with a syntax based on

PASCAL to illustrate the operators for each action.

3.5.2 Operations on the IDM

The following three pages contain tables th a t outline valid operations on the

IDM model. There is a table for each object in the IDM; first the name of the operation

is given, then the purpose of the operation. Finally, the resulting action in the data

model is briefly described.

www.manaraa.com

60

O perations on Calls

Operation Purpose Result

create_call: Add a software requirement
specification to the design.

Creates an instance of a new
call object in the database.

copy call: Create a new requirement
similar to an existing one.

Invokes create call: then
copies the attributes of an
existing call into the new call

retrieve_call: Prepare a call for use in an
operation.

Fetches a call from the
database using a surrogate
tuple identifier as a key.

edit_call: Allow’ unrestricted
modification of a software
requirement.

Call is retrieved and call
editor invoked.

make_call: Assign location for a call in
the design.

Call ID is added to code of ar
alternative object.

unmake_call: Remove software request
from design.

Erases a call ID from the
code of an alternative object.

unbind_interface: Change interface used to fill
a call.

Sets bound interface and any
bound alternative in the call
to "null."

unbind_alternative: Change alternative used to
fill a call.

Sets bound alternative in the
call to "null."

fill_call: Locate interfaces and
alternatives to meet software
requirements.

Automatically searches
database and advises
designer of results.

display_call: Allow designer to view call
attributes.

Call is displayed on viewing
device.

delete_call: Destroy undesired
requirement specification.

Removes a call from the
database.

www.manaraa.com

61

Operations on Interfaces

Operation Purpose Result

create_ interface: Define a new software
module.

Creates a new interface
object using the attributes of
a specified call; adds the
interface to the database.

copy_interface: Create new interface that is
similar to an existing
interface.

Invokes create_call and
copies attributes of existing
interface into the new call
object; then invokes edit_call

retrieve_interface: Prepare an interface for use
in an operation.

Fetches the interface from
the software library using tht
interface name as a key.

search_fo r_ interfaces: Find reusable component to
meet a software requirement.

Assists designer locate
interfaces using keyword
search and param eter
matching.

bind interface: Use an interface to fill (plug)
a call.

Associates an interface with
a call in the program design.

display_ interface: Allow designer to view the
attributes of an interface.

Interface is displayed on
viewing device.

display_alternatives: Allow designer to browse
alternative implementations
of an interface.

Alternatives, are displayed on
viewing device.

delete_interface: Destroy undesired interfaces. Removes an interface from
the software library.

www.manaraa.com

62

O perations on A lternatives

Operation Purpose Result

create_alternative: Add a new implementation
for an interface.

Creates a new alternative
object in the database.

C0Py_ alternative: Make a new implementation
of an interface that is similar
to an old one.

Invokes create alternative;
then copies existing
alternative into new
alternative object.

retrieve_alternative: Prepare alternative for use in
an operation.

Fetches an alternative from
the database library using
(interface_name,
alternative_name) as a key.

search_for_alternatives: Find reusable component to
meet a software requirement.

Assists designer search
alternatives using
implementation specific data.

bind_alternative: Designate an alternative to
meet a software requirement.

Associates an alternative
object with a call object.

edit_alternative: Update alternative attributes. Invokes alternative editor.

display_alternative: Allow designer to view
alternative attributes.

Alternative is displayed on
viewing device.

display versions: Allow designer to browse
versions of an alternative.

Show versions on viewing
device.

delete_alternative: Destroy undesired
alternatives.

Removes an alternative from
the database.

www.manaraa.com

63

3.5.3 Practice

3.5.3.1 Action 1: Developing a Call

As an example of how the designer uses the IDM to develop an abstract

request-for-service into a specific module instance, consider the case where the

software designer has a need for special kind of sorting routine to be used in an

I/O subsystem of a computer. In this scenario, the subsystem environment will be

the MVS operating system. The current state of the design is shown in Figure 3.4;

first the subsystem must queue incoming jobs, and then, if there are jobs to print,

they m ust be written to an output device. 6 The designer now wants the I/O jobs to

be sorted by priority before they are printed, and so, using the operations provided

above, the following actions are performed:

1. create call (var new call): A generic call is added to the design with all

attributes initially containing null values. A new instance of a call object is

created and added to the database. This action may be portrayed by the

instantiation of a call icon in one of the CASE system ’s graphical editors, as

shown in Figure 3.5.

2. edit call (new call): The designer is allowed to enter desired values for the

attributes of the call. These values represent the constraints that interfaces

and alternatives will be subject to when it is time to fill the call. For example,

the designer sets:

new call.tag := Sort?,

new call.function := sort,

new call.input := unsorted integer array,

new call.output := sorted integer array,

new call.language := PASCAL,

‘The notation shown in this diagram is more fully explained in Section 4.5.

www.manaraa.com

64

MVS
I C L S y s t ,

P r i n t ? °Queue?

Figure 3.4. A Partially-Defined I/O System.

/ Call?
\ /

Figure 3.5. A new Call Icon

new call.time := O(n-squared),

new call, version := Last

The designer may also enter administrative data such as the current date, his

name, and any other information stored as part of the call. The results of the

edit call operation are shown in Figure 3.6.

3. make call (new call, alternative, LOC type, LOC location,

LOC condition): The call is assigned a location in the "code" of an

alternative. F irst, the CASE system retrieves the specified alternative from

the database using the retrieve alternative operation. Next, the current

version of the alternative recieves a new line of code (LOC) of the type and in

www.manaraa.com

65

rS o r t?

Figure 3.6. The New Call After Editing

the location specified. For example, the designer wants this call to be a line of

"Sequence" code, the second statem ent to be executed in the "MVS"

alternative of the interface "10 System." There is no boolean condition

required, since sequence statem ents do not have guards for iteration or

selection. This operation may result in an arc, representing control flow, being

drawn between the calling module and the called object, as shown in Figure

3.7.

4. display call (new call): The system shows the completed call to the

designer. At this time, several activities may be selected. The designer may

elect to continue to edit the call, in which case he returns to step 2. He may

opt to search for interfaces to meet the requirements he ju st specified, in

which case he proceeds to Action 2, below. Finally, he may ask the system to

automatically attem pt to fill the call with a reusable component for him by

invoking the operation fill call.

3.5.3.2 Action 2: Filling the Call- Searching for an Interface

The designer wants to use a reusable module in order to meet the

requirement he outlined in the call object above. He has opted to conduct a search

for a reusable interface to fill the call and consults the public software library for

www.manaraa.com

66

MVS
ICLSyst,

Print? 0Sort?Queue?

Figure 3.7. MVS I/O System with New Call

possible routines that might be available for his use. The following actions

transpire:

1. search for interfaces: The system and designer match the call constraints

specified in Action 1 with the interface definitions contained in the software

library. Failure to locate a possible component normally results in the user

varying the parameters of the search and trying again. This is accomplished

using the call editor invoked by edit call. When candidates for reuse are

identified, the system loads the interfaces into the local workspace using the

retrieve interface operation.

2. display interface (current interface): After querying the software library the

designer discovers an existing interface for an integer array sort that appears

as if it will serve the function he requires. In order to ensure that this is the

case, the interface attributes are displayed for the designer’s inspection.

3. bind interface (var new call, current interface): Content with the interface,

the designer binds the interface, which in the example is called

"Integer_Sort," to the call. In the IDM, the field new_call.bound_int : =

"Integer_Sort." The action might be portrayed by replacing the call icon in

www.manaraa.com

67

the graphical editor with an interface icon, as shown in Figure 3.8. At this

point he m ay proceed to investigate possible alternative implementations for

this interface.

3.5.3.3 Action 3: Filling the Call- Searching for an Alternative

Now th a t the designer has located a suitable interface and has bound the

interface to the call, he desires to browse the available alternatives for the

interface, in order to determine if one of those alternatives is suitable for his needs

or whether he will have to modify, or completely design, one for himself.

1. search for alternatives (new call): The system and designer m atch the call

constraints specified in Action 1 with the alternative performance criteria for

each alternative of the interface "Integer Sort," which is currently bound to

the new call. As with interfaces, failure to locate a possible component

normally results in the user varying the param eters of the search and trying

again. This is accomplished using edit call. When a candidate alternative is

identified, it is loaded into the local workspace by the system , using the

retrieve alternative operation.

2. display alternative (current alternative): After querying the software

library the designer discovers a quicksort implementation for the integer

array sort interface that appears as if it will meet the constraints outlined in

the call. This alternative is named "Quick." The alternative attributes are

displayed for the designer’s inspection.

3. bind alternative (var new call, current alternative): If the designer is

satisfied with the alternative, he binds it to the call. In the IDM the field

new call.bound_alt := "Quick." Graphically, the action is represented by

replacing the interface icon, which represents a call with bound interface, with

an alternative icon, which represents a call with a bound interface and a

www.manaraa.com

68

/ \
Sort?

\ /

I n t S o r t

Figure 3.8. Binding an Interface to a Call

I n t . S o r t y lOuick
-r l i n t S o r t

v. 1

Figure 3.9. Binding an Alternative to a Call

bound alternative. This result of the binding action is depicted in Figure 3.9,

and the I/O subsystem design as it now stands is depicted in Figure 3.10.

3.5.3.4 Action 4: Developing an Interface

Assuming that the designer was unable to locate an interface in the library

tha t met his needs, he must create one that is customized for his own application.

For example, consider that instead of sorting an integer array, the designer wished

to search an array. The following actions are required:

1. create interface (var new call): An instance of a new call object is created

in the database. A call object is created rather than an interface object

because editing interface objects is restricted in order to guarantee the

integrity of module definitions. This is discussed more fully in Appendix II.

www.manaraa.com

MVS
IC L Syst ■

Quick
I n t S o r t

P r in t ? 0Queue?

Figure 3.10. The Resulting I/O Subsystem

Initially, all of the attributes of the new call object contain null values.

edit call (var new call): The designer enters desired values for the

attributes of the future interface. These values will define the interface and

serve as search indices in later search for interfaces. For example, the

designer sets:

new call.name := Integer array search,

new call.function := search,

new call.input := sorted integer array,

new call.output := index,

new call.language := PASCAL,

new call.medium := ring buffer,

new call.environment := MVS,

The designer may also enter administrative data such as the current date, his

name, and any other information stored as part of the interface header.

display call (new call): In order to check the values of all the attributes,

they are displayed for the designer’s inspection.

The last step is a decision as to whether or not to actually make the call into

www.manaraa.com

70

an interface using create interface, or simply save the call for later

modification. If the interface operation is committed, then the values of the

call become locked as a new interface object and are unchangeable. Before the

operation is allowed to commit, however, the interface name is checked for

uniqueness. If the interface is not committed, the call is saved as a new call

object in the database. If the operation is aborted, the instance of new call is

destroyed.

3.5.3.5 Action 5: Developing an Alternative

Assuming tha t the designer creates an new interface object, he normally

proceeds to develop an alternative tha t will implement the function of the interface.

In the IDM, the steps for creating a new alternative for an interface are similar to

those taken when creating a new interface. The following actions are required:

1. create alternative (interface, var new alternative): An instance of a new

alternative object is created in the database. The interface th a t defines the

alternative m ust be specified. Initially, all of the attributes contain null

values. A null version of the alternative without code, tha t is, a version that

could be called Version #0, is logically contained in the alternative.

2. edit alternative (var new alternative): The designer enters the alternative

editor and sets desired values for the alternative attributes. These values will

define the performance attributes of the alternative and, as in for interfaces,

serve as search indices during the operation search for alternatives. For

example, the designer sets:

new alternative.name := Binary method,

new alternative.time : = 0 (log n),

new alternative.space := O(n),

new alternative.component := I/O manager,

www.manaraa.com

71

The designer may also enter administrative data such as the current date, his

name, and any other information stored as part of the alternative header.

3. display alternative (new_alternative): In order to check the values of all the

new alternative attributes, they are displayed for the designer’s inspection. At

the conclusion of this operation, the designer may commit the new alternative

to the database or abort the operation, thereby destroying the newly created

object.

3.5.3 .6 Action 6 : Developing Similar Modules

There are times when an interface or alternative is found that is very

similar to the one desired, and will suffice in the current application after some

small modifications. In this case, it is beneficial to be able to copy the existing

objects, edit them, and then save the changes as a new object. The actions required

are similar to those in Actions 4 and 5, respectively. However, the first step in

each is replaced with:

1 . copy interface (current___ interface, var new call): Creates a new instance of

a call object, then copies the attribute values of the current interface into the

new call object. The interface name, since it must be changed, is not copied.

The designer then treats the new call as in Action 4.

or...

2. copy alternative (current_alternative, var new alternative): Similar to

above, except that the interface representing the current alternative will also

be the interface representing the new alternative. This enforces the constraint

that new alternatives are defined by the same interface that defines the

alternative they were copied from. The designer then treats the new

www.manaraa.com

72

alternative as in Action 5.

3.6 Relationship of the IDM to Object-Oriented Program Design

One of the most im portant aspects of the object-oriented design paradigm is the

encapsulation of certain parts of the design in order to hide implementation details from

the user [Boo84, Pyl81, Wir85]. However, care m ust be taken so that during the design

process certain key data remains accessible. Much of the information th a t the designer

requires in order to (i) retrieve appropriate design objects from the database, and (ii)

select the best alternative implementation for his needs, is specific to the

implementation and is not available by looking solely a t the interface for th a t object.

The data model above reflects the belief that, although one part of the object’s

interface is, indeed, composed of the externally visible attributes common to all its

implementations, the complete interface m ust provide access to all the externally visible

attributes of a module, even those which are implementation-specific. The prim ary

examples of such attributes are performance characteristics that may influence a

designer’s decision to use tha t object, such as those required in order to conform to a set

of design constraints. Other such attributes include memory requirements, object code

size, and the time complexity of the algorithm. In the VLSI domain, such attributes

include surface area, power consumption, and delay time.

In some respects this belief conflicts with the object-oriented paradigm because it

extends what the user sees of an object to some aspects of the object’s implementation.

However, closer inspection reveals that the true difference in this approach is in what is

considered to be the role of a software interface. The interface must not only provide

access to the common attributes of the objects it represents, but also allow the user to

distinguish among available alternatives. If some criteria that may effect a decision to

use a module is only available by running the module, the interface is not completely

doing its job. The key point is that such performance attributes are visible to the user,

www.manaraa.com

73

although perhaps indirectly. Therefore, this definition of the role that an interface plays

in the design of programs is not so much in conflict with the principle of information

hiding as it is a clarification of something not previously recognized by object-oriented

programming advocates.

www.manaraa.com

4. CAPTURING DESIGN INFORMATION IN A CASE SYSTEM

4.1 Introduction

Current CASE systems incorporate one or several of the well-known software

design methodologies into a set of tools used for the design of programs. These tools

take the form of interactive graphical diagramming aids in which the designer develops

the software product in a pictoral form according to the conventions of the particular

methodology that he is using. It is then up to the CASE system to extract the

necessary program design information from these diagrams and store this information

in a meaningful internal representation.

The motivation for the use of pictures in the software process is the familiar

adage th a t "a picture is worth a thousand words." Design diagrams help people to

experiment with design ideas, helping the human reasoning process by providing an

alternative view of textual specifications or programs [Buh89].

Complications arise when the internal database representation of the program

design information does not easily correspond to the diagramming method used by the

designer. In such cases it is necessary to infer certain information required by the

model from the diagrams. However, while these deductions may help to complete the

description of the design in the database, they may also lead to errors by introducing

invalid assumptions about the program and intent of the designer. I t is desirable,

therefore, to semantically store program design data in a form that directly maps to the

major software engineering methodologies and tools used to develop software.

In order to fully understand w hat these tools are and what design information is

available from them, a survey of the major software engineering methodologies is

conducted. This survey is divided into those methodologies commonly used for high-level

conceptual software design and those methodologies used primarily for low-level design

and programming. The goal of this study is to determine if there is some characteristic

74

www.manaraa.com

75

th a t binds these various diagramming techniques together. If such a characteristic

exists, then (1) an appropriate internal representation can be found th a t easily

corresponds to this characteristic, and (2) an optimum software design diagramming

technique can be identified or developed for the efficient capture of program data. This

chapter concludes with the presentation of a new technique for the capture of design

data in CASE systems tha t is powerful in its expressive ability and th a t is tied closely

to the common aspects of the major software diagramming techiques.

4.2 High Level Design Methodologies

4.2.1 Functional Decomposition

Functional decomposition, modular programming, and top-down design all

variations of the very strong structured programming movement tha t followed the

landmark article by Dijkstra titled "Programming Considered as a Human Activity"

[Dijk65]. This article, among other things, expounded upon the divide-and-conquer

approach to solving programming problems. All of the members of this genre depend on

the stepwise refinement of a problem based on functional requirements. The result is

progressively smaller problems th a t eventually can be solved with just a few lines of

code. The basic graphic tool in this design method is the tree diagram, with rectangles

a t the nodes representing an abstract function or problem to be solved. Children of a

node are subproblems of that node, and lines to subordinate rectangles imply that the

superordinate problem can be decomposed into the sub-problems below it.

The major considerations when doing Functional Decomposition are those of

cohesion and coupling. Cohesion is the degree to which a module does one unique task.

Modules th a t perform more than one task m ay have several types of cohesion, for

example temporal (all actions tha t m ust be done at the same time), logical (all actions

are of the same type) or the "worst" type, coincidental cohesion (little connection

www.manaraa.com

76

between the actions [Stev74, p. 208-217]. As designers and programmers, we should

strive for the highest possible cohesion. The second consideration is that of coupling,

which is the measure of interconnection between modules. For example, modules that

are related by the passing of program flow have control coupling; the worst types of

coupling are those that bind modules to the environment (common coupling) or to the

contents of other modules (content coupling). One of the lowest forms of coupling, data

coupling, is when modules are related only by the passing of data; we should obviously

strive for the lowest amount of coupling possible. A program that is the result of proper

functional decomposition should achieve both of these requirements.

4.2.2 Data Flow Design

D ata flow design is an analysis of the transformations made to information as it

moves through a system. In its purest form it is functional decomposition applied to

data. The key consideration is that the system may be thought of as being composed of

information that is in a continuous "flow," undergoing a series of operations as it

evolves from input to output. [Pre82, p. 178] Data flow diagrams (DFDs) are the

graphical tool that depict this flow and are, for those familiar with it, basically a

network representation of the system [Myer78, p.47]. The diagrams consist of arcs

representing data flow and bubbles representing data transforms. See Figure 4.1.

The data flow design process, as well as several modifications to the method

(structured design, composite design, SADT), have been well defined by Myers,

Yourdon, and Constantine, and consists of the following [Pre82, pp. 182-192]:

1. Review the model by studying the system specification and requirements.

2. Construct and review the data flow diagrams for the software.

3. Identify the main transformation "center" of the diagram. Data incoming to this

center is called "afferent;" data leaving this center is called "efferent." Delineate

this transaction center on the DFD.

www.manaraa.com

or Source or destination of data

or Process that transforms data

Data store

Data flow

Figure 4.1. Data Flow Diagram symbols

A f fe r e n t f lo w | Transform | E f f e r e n t f lo w

y✓ S .

Figure 4.2. First-level factoring

www.manaraa.com

78

4. Perform first-level factoring. That is, consider the system as being composed of the

afferent flow, efferent flow, and transaction center. See Figure 4.2.

5. Perform second-level factoring. That is, decompose the bubbles in the DFD into

more detailed, refined DFDs. In this m anner, "levels" of diagrams are created,

with each subsequent level encompassing more detail in the system. See Figure

4.3. The Final system will be composed of modules tha t are mapped from the

lowest level DFDs.

Although many systems lend themselves nicely to data flow design, it is

conceded th a t this method loses it’s usefulness as a low-level design tool since no

representation for iteration or selection is provided. The DFD is powerful in its ability to

quickly convey the general activities of a system, but without a means for explicitly

generating loops and condition statements the diagrams cannot give the programmer

the detail necessary for generating unique and correct data structures and control

statem ents.

Stevens, Myers, and Constantine [Ste89], have developed a popular data flow

technique th a t aims itself at getting the designer directly to a program structure. After

the afferent, efferent, and transform center of the data flow diagram are identified,

these are mapped into a tree diagram similar to th a t of the functional decomposition

technique. In fact, the process they describe is, from this point on, very similar to

functional decomposition. They do, however, include in their method a distinct

diagramming notation for the program structure (Figure 4.4), as well as a method for

including the interface information as part of the structure diagram. Each arc in the

Structured Design diagram is labeled and has the param eters associated with the arc in

a corresponding box elsewhere in the diagram. A sample template for a module

interface form is shown in Figure 4.5.

www.manaraa.com

79

Figure 4.3. Leveling

4.2.3 Data Structure Design

4.2.3.1 The Jackson Method

Data structure design is based on structuring the program to reflect the

input and output data structures. The major proponent of data structure design is

Michael Jackson, and the design process and diagramming conventions that are

discussed here are derived from his work [Jac75]. D ata structure design is used

mostly in business applications where the data structures (commonly personnel and

financial records) are well defined. The concept is th a t "paralleling the structure of

input data and output (report) data will ensure a quality design" [Pre82, p. 206].

Like the data flow design method, the data structure method has a diagramming

convention to assist as a graphical tool. However, the data structure diagram

(DSD) follows more closely the style of the traditional tree diagram, with

rectangles representing atomic data units and lines representing the "is composed

o f ' hierarchy in the tree.

www.manaraa.com

80

STRUCTURE CHART SYMBOL DEFINITION

MOOUIF

p r e d e f in e d m o o u ie

MOOULE * INVOKES MOOUU B. ANO PASSES PARAM
£TERS Jf ANO f FROM A fO 0 MOOUU 0 PASSES PA
RAMETER / TO MOOUIE A

'CT-n - i

MOOULE A INVOKES MOOUUS 0 ANOC WHERE POSSI
BLE. MODULES ARE PLACEO LEFT TO RIGHT IN LIKELY
OROCR OF INVOCATION

MOOULE B REFERS TO OATA IN MOOULE A (DATA FLOW
FROM A TO B) MOOULE A CONTAINS A BRANCH TO MOO
ULE C

THE MORE COMPREHENSIVE ‘PROPOSEO STANOARO GRAPHICS FOR PROGRAM STRUCTURE." PREFERRED BY MR CON-
A? ° WIMLV U S t0 0 V tR ™ C P * ST S ,x VCARS 0V M,s CLASSES ANO CLIENTS USES SEPARATE ARflOWS FOR

EACH CONNECTION. SUCH AS FOR THE CALLS FROM A fO 0 ANO FROM A TO C. TO REFLECT STRUCTURAL PROPERTIES
O f THE PROGRAM. THE CHARTING SHOWN HERE WAS AOOPTEO FOR COMPATIBILITY WITH THE HIERARCHY CHART O f HIPO

Figure 4.4. Structured Design Notation

There are two points on which the data structure method is significantly

different from the data flow method. First, the data structure method moves

quickly to a procedural domain; the emphasis is on producing a software

framework and of outlining tha t framework as early as possible in the design

process. The data flow approach does not have this emphasis, and as such has a

more definite boundary between the stages of high-level and low-level design.

Second, the data structure method has constructs to represent the three major

types of program statements of sequence, selection, and iteration, as shown in

Figure 4.6 [Pre82]. The circle in the upper right of a node indicates the data

component is conditional, for example, an employee may or may not be married.

An asterisk in the node indicates iteration, for example, the employee may have

www.manaraa.com

81

IN TERFA CE CH ART P rogram : Date: P a g e___ o f ____

in te r
face
no.

Calling
m odule

Called
m odule

IN OUT
Coup

ling

Type
of

call1

ProO
of

can2

1 1 * Iterative, N 3 N ot iterative
2: P robability th a t w hen the calling m o d u le ce n tered , if w ifljnvoke the called m odule _

Figure 4.5. Module Interface Form

any number of children. An absence of either symbol indicates sequence, in that

the data record is constructed of the data components as taken in a left-to-right

order. This convention allows the data structure diagram to be translated nicely

into high-level code.

The process of data structure design is defined as follows by Pressman, and

is illustrated with the following Figures from the text by Yourdon [Pre82, p. 207]:

1. Data structure characteristics are evaluated (Figure 4.7).

2. Data are represented in terms of elementary forms, such as sequence,

selection, and repetition. The correspondence between the input and output

data structures is noted (Figure 4.8).

3. Data structure representation is mapped into a control hierarchy for software

www.manaraa.com

82

Figure 4.6. Data Structure Diagram Notation

R eport
body

R eport
header

C ustom er
paym ent

report

P aym ent
record

line

Paym ent
report

Final
to tal
line

C ustom er
rep o rt
body

O th e r
record

C ustom er
to ta l
line

C ustom er
record

Inpu t
file

Figure 4.7. Input and Output Data Structures

(Figure 4.9).

4. The software hierarchy is refined.

5. A procedural description of the software is developed.

www.manaraa.com

83

Payment
record

Final
total
line

Custom er
record

Custom er
group

O ther
record

Input
file

Custom er
to tal
line

R eport
header

P aym en t *
reco rd

line

C ustom er
rep o rt
bod y

C u sto m e r *
p ay m en t
r e p o rt

R ep o rt
b od y

P aym en t
re p o rt

Figure 4.8. The One-to-One Correspondence

4.2.3.2 The Warmer Method

Another example of data structure design is the Warnier/Orr diagram,

which is very popular in Europe, and particularly in France where it was

developed [Dav83]. Shown in Figure 4.10 [Pre82], this methodology is similar to

the Jackson method, differing primarily in the diagramming style. There is

therefore a close correspondence between a Jackson diagram and a Warmer/ Orr

diagram of the same system, and one can certainly derive either type of diagram

from the other. There is also a method for mapping W arnier diagrams to

flowcharts, known as the "logical construction of programs," which provides a

step-by-step process to follow in going from a W arnier/Orr diagram to high-level

code.

The data structure design methodology can be summed up as follows: "The

process of finding one-to-one correspondences between the data structures is

www.manaraa.com

84

Print
custom er

report
body

Print
custom er
paym en t

rep o rt

Print
paym ent
record

line

Prin t
custom er
to ta l hne

Ignore y
o th e r
record
(null)

P rin t p aym en t
rep o rt from

in p u t file

Print
report
header

Prin t
line

Print
report
body

P r i n t
final to tal

line

Figure 4.9. The Resultant Program Structure

fundamental to (the data structure) technique" [Myer78, p. 95]. Consequently, the

major problem with this or any data structure design method is in applying it to

applications where there are not well-defined data structures, or in situations

where the input data and the output data are very dissimilar.

In the former case, simply starting the data structure methodology is

difficult. In the latter case, we have what is known as a "structure clash."

Jackson’s solution to this situation is to design an intermediate data structure that

can act as a bridge between the input and output data representations. Jackson

then proposes to use the data structure methodology twice, once to decompose the

input data to the intermediate data structure, and then to map the intermediate

data to the final output data structure. It is probably best, however, to simply use

www.manaraa.com

85

I te m a
(I t im e)

D ata record I J I te m b
(4 tim es)) (1 tim e)

Item c
(1 tim e)

D ata file \ record 2
(0 o r I lim e)

D ata record 3
(it tim es)

Item f -
(I tim e)

Item g
(0 o r I tim e)

I te m i/
(0 o r n tim e)

I te m c
(I tim e)

{ E le m e n t /

(m t im e s)

Figure 4.10. A W armer/ Orr Diagram

a different design method when one is faced with this situation.

4.2.4 Object-Oriented Design

Object-oriented design is the paradigm th a t is gradually challenging functional

decomposition for the premier design methodology in industry. The method considers

each data structure as a separate entity, and encapsulates this entity in a separate

software package along with the procedures that are allowed to operate on it. When the

data entity and the procedures are taken together in this fashion, they are considered

an "object." The idea is th a t other routines are able to use the data and the operations

in a black-box fashion, but are unable to see the details of their implementation, thus

achieving a high level of abstraction, maintainability, etc.

In literature by Grady Booch, who is one of the major advocates of this method

and the programming language Ada, Object Oriented Design is described as follows

[B0 0 8 6]:

1. Write down (in paragraph form) the problem statement.

www.manaraa.com

86

Package Specification Package Body

Figure 4.11. Object-Oriented Design Symbols

2. Underline the nouns in the problem statement.

3. Underline the verbs in the problem statement that are associated with each noun.

4. Map the nouns to data objects and the verbs associated with each noun to

procedures. Each collection of data objects and procedures is "packaged" together.

5. Repeat the process as necessary to realize the actions of each "verb" until the

appropriate level of detail is achieved.

The diagramming notation proposed by Booch is very simple and is capable of

quickly conveying how the data objects and their operations are grouped as abstract

data types. This grouping is called a package in the programming language Ada, and is

shown in Figure 4.11. References between ADTs are pictorally represented by drawing

lines from one package diagram to the other; however, as shown in Figure 4.12, these

lines do not specify the type of interaction between the ADTs, and no provision for the

three programming constructs is made. It should also be noted that in addition to the

diagramming method proposed by Booch, there is the Buhr diagram, which is a

proposed standard for Ada programs. Buhr diagrams, however, will not be discussed

here [Buhr8 4].

www.manaraa.com

87

MAKE-CONCORDANCE

CONCORDANCE

DOCUM ENT

W O RD S

LINE-NUM BERS

Figure 4.12. An Object-Oriented Design Diagram

4.2.5 IPO Charts

IPO (Input/ Process/ Output) charts are forms that summarize on one page the

im portant aspects of a module, such as the data it inputs, outputs, who calls it, and

who it calls. The IPO chart also provides a general description of the module as well as

important management information, such as the person responsible for the module. An

example IPO chart is provided in Figure 4.13 [Dav83]. By itself, the IPO chart provides

an excellent summary of a single module for reports and design reviews, but is unable

to quickly convey the relationship between modules. For this reason, they are often

accompanied by a structure chart such as one used by the functional decomposition

methodology. In this case the name IPO becomes HIPO, for Hierarchy plus Input/

Process/ Output. The IPO charts then serve to complement the functional decomposition

diagram in a nice way, and perform much the same task as the module interface form

does for the structured design technique.

www.manaraa.com

88

IPO C h a r t
SYSTEM: Inventory_________ PREPARED RV- I . Burk

M n m n F- G et in v en to ry n A T T - 1 /5 /8 8

CALLED OR INVOKED BY: CALLS OR INVOKES:
U p d a te in v en to ry

INPUTS: OUTPUTS:
* p- mpTT n u m b e r IN V E N T O R Y

M A S T E R R O R -F L A G M A S T -E R R O R F L A G

PROCESS:

G E T inven to ry m aster re co rd

l F m aster file read ■> successfu l

THEN TU RN O F F m a s te r ro r - f la g

ELSE (m aste r file re a d n o t su cc ess fu l)

SO T U R N ON m ast-e rro r-flaq .

LOCAL DATA ELEMENTS: N O T E S : T h e in v e n to ry m a s te r
f ile is a d i re c t ac ce ss file k e y e d
b y p a r r n u m b e r .

Figure 4.13. An IPO Chart

One advantage of IPO charts is that they could complement any methodology

just as well as they do functional decomposition. They provide a standard format for

presenting information about a module, independent of the design method being used.

Assuming a program design exists in a database, the IPO chart could be completed for

documentation or report purposes, for the most part by only reformatting existing data

or by subjecting the database to queries for the needed information.

www.manaraa.com

8 9

4.3 Low Level Design Methodologies

4.3.1 Introduction

High level design methods are aimed primarily a t establishing a modular

structure for the software that is going to solve the problem a t hand. At some point in

the design process, as the refinement of the problem proceeds, it becomes necessary to

address the procedural details of the modules that have been established. For this task,

low level design tools are needed. Typically, high level tools lack the detail needed to

express single source code statem ents or sequence of actions. Likewise, the converse is

true of the low-level tools in tha t they tend to provide too much information for a

general overview of a large problem.

4.3.2 Standard Flowcharts

Standard flowcharts, as shown in Figure 4.14 [Mur75], were perhaps the very

first graphical tool used to assist programmers in visualizing their programs. They have

the advantage that they are readily understandable, even by persons untrained in their

use. The symbols are simple and translate easily to code, often with a one-to-one

correspondence.

The major problem with flowcharts is that they are, in a sense, relics of a dying

programming style associated with FORTRAN programs. They allow arbitrary transfer

of control in a program, something common in old FORTRAN code, but considered sinful

by structured programmers. They also have no means of representing recursion, a

powerful programming technique not available in FORTRAN but widely used today for

certain classes of problems. However, the standard flowchart is still popular because of

its simplicity and its powerful way of immediately conveying to the reader a sequence of

actions.

www.manaraa.com

90

()

O

A rectangle is used to indicate a pro
cessing symbol (typically arithm etic opera
tions).

A diam ond is used to indicate a deci
sion and the lines leaving the corners of
the diam ond arc labeled with the decision
results th a t are associated with each path.

The parallelogram is used to indicate
any basic inpu t or ou tpu t symbol. There
are, in addition, many special symbols for
inpu t-ou tpu t operatic,..s. -

An oval is used to indicate either the
beginning or the end of a program, i.e., a
term inal st0p or s t a r t.

A sm all circle is used to indicate a
connection between two points in a flow
ch art in situations in which a connecting
line between them would c lu tter the basic
flowchart.

Arrows are used to indicate the di
rection of flow through the flowchart.
Every line should have an arrow on it, bu t
the length of the arrow is not important.

Figure 4.14. Standard Flowchart Symbols

4.3.3 Structured Flowcharts

The structured flowchart was developed to be the answer to the problems with

the standard flowchart that were discussed above. Another name for structured

flowcharts is the Nassi-Schneiderman diagram, named for the authors that introduced

the notation in 1972. Examples of the structured flowchart’s symbols are shown in

Figure 4.15, and an example of how a code segment would be diagrammed in this

notation is shown in Figure 4.16 [Yod83J.

In the Nassi-Schneiderman diagram there are constructs for the basic operations

of sequence, selection, and iteration. Each construct has exactly one entry and one exit,

thereby disallowing arbitrary transfers of control. However, they have never achieved

www.manaraa.com

91

the -wide acceptance of the original flowcharts, possibly because they do not convey the

flow of control in a module as quickly as do standard flowcharts. Another problem is

that because each statem ent is represented by a box that is nested inside another box,

in large sections of code, or in small sections that involve a lot of conditional branches,

the space available for flowcharting may shrink very rapidly. This is a serious problem

for a person working on paper, although much less of a limitation for one using a

graphics computer with the ability to expand the work area by "zooming in" or

windowing. Like standard flowcharts, a properly completed structured flowchart may be

translated directly into code [Yode78],

4.3.4 Finite State Machines

A special class of problems may be represented by the actions of a finite state

machine. For example, the lexical analyzer of a compiler may enter different states

depending on whether it is scanning character symbols or numbers, or whether it has

recognized a reserved word or programmer-defined symbol. Each new input character

specifies a transition to a new state and possibly an action to be completed upon

entering that state, such as outputting a complete token to the parser. For such

problems, a finite state machine representation like that depicted in Figure 4.17 [GE87]

is ideal.

In this diagram, the circles represent a state that the machine may be in, and

each arc represents an allowable transition to a new state. Associated with each arc is

a set of conditions that m ust be met for the transition to take place. This representation

has the advantage that it, too, may be translated directly into code, although it has a

major drawback in that the class of problems lending themselves to this type of analysis

is quite limited.

www.manaraa.com

F irst task

N ext task

N ext +1 task

C o n d itio n

Else
part

T hen
part

L oop co n d itio n

D o-while
part

R ep e a t-u n til
part

L oop c o n d itio n

Case c o n d itio n j/

V alue V alue

Case
part

Case
pan • • •

Repetition Selection

Figure 4.15. Structured Flowchart Symbols

4.3.5 Decision Tables

Certain types of problems that require multiple nested decisions are difficult to

describe using the above methods. When a set of actions m ust be chosen based on a

complex set of conditions, a tabular format as in Figure 4.18 may be easiest to

understand [Lond72].

The numbers across the top of the table are rules, and represent the state that

the all the conditions m ust be in for some action to occur. The following procedure is

defined for developing a decision table [Pre82, p. 250]:

1. List all actions that can be associated with a specific procedure or module.

2. List all conditions or decisions that m ust be made during the execution of a

procedure.

3. Associate specific sets of conditions with specific actions, or else develop every

possible permutation of conditions.

www.manaraa.com

INITIALIZE ano open PILES

WRITE REPORT HEADINGS TO PRINT PILE

REAO PAYROLL PILE

0 0 WHILE NOT ENO OF PILE (ON PAYROLL PILE)

YTD FlCA< MAXPICA

YES

OEOUCTION • PICA % ■ GROSSPAY

VTO PICA ♦ OEOUCTION
s . > MAXPICA >

NO

OEOUCTION*
MAXPICA -

YTOPICA • YTOPlCA
• OEOUCTION

NETPAY • GROSSPAY - OEOUCTION

CREATE OUTPUT REPORT RECORO

WRITE REPORT RECORO TO PRINT PILE

REAO PAYROLL FILE

Figure 4.16. Structured Flowchart Example

TW> H O I H I Mcaw «• i n m i n m

Figure 4.17. A Finite State Machine

www.manaraa.com

94

Conditions

Actions

Kuie
numbers 1 2 3 4 s

Fixed rate account T T F F F

Variable rate account F F T T F

Consumption < 100 KWH T F T F

Consumption > 100 KWH F T F T
Minimum monthly charge X
Schedule A billing X X
Schedule B billing X
Other treatment X

Figure 4.18. A Decision Table

4. Define the rules by indicating w hat action(s) occurs for a set of conditions.

The decision table may be directly coded much the same way as the other low

level design representations can, since the table basically represents a giant "CASE"

statement. However, the table by itself has no means for representing sequence of

execution or iteration. Therefore, its usefulness is, like the finite state machine,

somewhat limited.

4.4 Mapping the Design Methodologies to Program Structure

4.4.1 Introduction

The net result that each of the software engineering methodologies seeks to

achieve is a viable software product. This software product consists of modularized

program code depicting the flow of control in the software product. It is also im portant

to note that, with the exception of the object-oriented design method, there is a distinct

bias towards programming in a structured target language such as PASCAL or PL/I.

Therefore, the following discussion details the transformations that a CASE system

m ust make in order to capture this kind of control information from the various

diagrams tha t may be used for program design. The goal of this discussion is three-fold.

www.manaraa.com

95

First, this bias towards structured target languages leads us to believe that program

design data should be captured in such a way that emphasizes the flow of control in

programs. With this in mind, we seek to find the "best" method for capturing program

design data, and eventually will present a new technique for this purpose. Second,

understanding how these diagramming techniques interelate will prove important in

developing a "standard" form for efficiently and effectively storing program design data.

Third, by showing how each of the major methodologies maps to this standard form we

can validate the usefullness of storing program design data in such a manner.

4.4.2 High Level Design Methods

In contrast to the low level design methods, where all of the diagramming

conventions basically depict the flow of control, the diagram in the high level method

m ay depict one of several things. It is important to remember, for example, that the

DFD represents data flow, not necessarily any type of control mechanism. Likewise, the

DSD is a pictorial representation of the input and/or output data structures, and by

itself does not show how program control is handled. I t is easy to loose sight of this

im portant difference and interpret all of the diagrams as a type of flowchart, which, of

course, is not correct. The following paragraphs discuss in more detail the conventions

for mapping the various design methods to the flow of program control.

4.4.2.1 D ata Flow

As revealed in a previous section, the data flow diagram has no convention

for expressing the basic programming building blocks of selection and iteration. In

addition, the idea of algorithm sequence is not well represented since the DFD may

show multiple flows of data that logically could be happening in parallel or

independent of one another. In problems where there happens to be some form of

sequence implicit in the algorithm and this sequence is not obvious from the

www.manaraa.com

96

direction of the data flow arrows, it is convention to assign the upper left of the

diagram as the earliest chronological point and the lower right as the latest.

In order to derive the program structure from the DFD, it is necessary to

examine each element of the diagram more closely. Since a bubble in the DFD

represents a processing step, it could only map to one of two things. These are (i) a

subtask (module) or (ii) a basic statem ent of sequence code. Since the DFD is a

high level design tool, the great majority of the bubbles will represent subtasks;

only in extreme circumstances would one expect the low-level construct of actual

code to be expressed. 7 The arcs, which represent data in motion, are analogous to

parameter lists (module interfaces), and an arc from one bubble to another is a call

to that module.

The mappings for the remaining two symbols in a DFD, however, are not

so well defined. The first of these symbols is the data store. Data stores are, in

essence, disk files, so references to them are equivalent to file read or write

statements, depending on the direction of the arc in the DFD. Note that these are

a type of sequence code and could be inserted as part of the future code for the

module. However, one will would have to make non-trivial assumptions as to

where they would appear in the sequence of processing. A logical assumption,

though not always a correct one, would be to make data reads appear before any

processing is done, and data writes appear after all processing is complete.

The final DFD symbol which needs to be addressed is the data source/sink.

Quite often this data source/sink is a user who is sitting at a terminal. It may also

be some kind of real-time monitoring instrumentation or control device. In any

case, the bubble th a t directly interacts with the data source/sink must have as part

of its function any communication activities or protocalls that may be required.

7 If this were not true, then the DFD would be little more than a special
case of the standard flowchart.

www.manaraa.com

97

This may involve appropriate prompts, error handling for unexpected conditions, or

specialized output messages or reports. None of these activities is directly

represented as part of the DFD and is probably best included as part of the

functional description of the appropriate bubble.

4.4.2.2 Second-Level Factoring

One technique of deriving a program structure directly from the DFD is

described in [Pre82] as "second-level factoring." The DFD is completed and the

afferent data flow/ central transform / efferent da ta flow boundaries are depicted.

Then, "beginning a t the transform center boundary and moving outward along

afferent and then efferent paths, [bubbles] are mapped into subordinate levels of

the software structure" [Pre82, p. 187]. See Figure 4.19.

Second level factoring could be automatically performed and an initial

program skeleton created for the user. It has the drawback, however, th a t the

resulting program m ay need a lot of critical inspection and modification before it is

considered "good." Since this final assessm ent is very difficult to formalize, it

would be equally difficult to automatically enforce design decisions implied by the

original DFD. Nonetheless, second level factoring is a viable technique for

converting data flow diagrams into program flow.

4.4.2.3 Data Structure

The basic technique of mapping the DSD to program structure has been

outlined in a previous section. The important thing to note is how the the program

structure maps almost directly from either the input or output data structure

diagram (in Figure 4.9 the program structure was derived from the output data

structure). However, because of the recognition of iteration and selection in the

DSD, there are several additional items tha t can be included in the code of the

www.manaraa.com

98

Cm

Figure 4.19. Second Level Factoring

modules.

Note the example DSD shown in Figure 4.20 [Pre82]. The DSD implies

that the controlling module for PAY REC contains code to the effect of

While not (condition) do PAY REC;

because the diagram symbol for PAY_REC contains an "iteration star." By

interpreting the rest of the diagram in the same manner, the remaining code

sequences in the figure could be derived and added to the program design

automatically.

Of course, as is necessary for second-level factoring of a DFD, a thorough

inspection of the resulting software must be conducted after the above process is

completed.

4.4.3 Low Level Mappings

As alluded to in the introduction to this section, the correspondence between

between low level design methods are much stronger since they all directly or indirectly

indicate flow of control. As such, deriving a program skeleton from these methodologies

is quickly explained with a short diagram or algorithm. These transformations are

well-documented and have been produced in numerous CASE systems.

www.manaraa.com

99

R e m a i n i n g r e c o r d s

PA Y -REC

D A T E S

P r o c e d u r e PAY_REC;
b e g i n
D a t e l _ r e c o r d ;
R e m a in in g _ r e c o r d s ;
end;

P r o c e d u r e DATES;
b e g i n
i f D a te >= d a t e l t h e n AFTER; (* some a c t i o n r o u t i n e *)
i f D a te < d a t e l t h e n BEFORE; (* a n o t h e r r o u t i n e . . . *)
end;

Figure 4.20. DSD-to-Code Conversion Example

4.4.3.1 Flowcharts

The major code constructs that the flowchart m ust represent are shown in

Figure 4.21 [Yod83]. Note that the CASE statem ent, although not strictly

required, is included for clarity. The CASE statem ent is important not only for

making more aesthetically pleasing flow diagrams, but greatly assists in the

flowchart representation of a decision table.

4.4.3.2 Structured Flowcharts

The constructs for structured flowcharts are shown in Figure 4.15, and,

like the constructs for standard flowcharts, map directly to program flow of

D a le > d a t e D a le < d a l e

P r o c e d u r e R e m a in in g _ r e c o r d s ;
b e g i n
W h i le n o t (c o n d i t i o n) do

DATES;
en d ;

www.manaraa.com

100

IFTHENELSE

SEQUENCE

OOWHILE O O UN TIL

CASE

PROCESS B

PROCESS B

PROCESSA

"U N T IL "
PROCESS

"W H IL E "
PROCESS

PROCESS NPROCESS A

"T H E N "
PROCESS

"E LS E "
PROCESS

Figure 4.21. Standard Flowchart Code Sequences

control.

4.4.3.3 Finite State Machines

The finite state machine diagram is best referred to by the algorithm in

Figure 4.22 [Pou88a]. This algorithm controls the state transitions of the machine

based on the inputs to the machine. This algorithm assumes that the finite state

machine is coded into a 2x2 array or state table. It is just as allowable to specify

each transition directly as a set of nested if...elsif...elsif statements; this latter

method is actually required if the state transitions are specified by conditions that

www.manaraa.com

101

cannot serve as indices into the array. Note that the following algorithm consists

solely of the basic code constructs tha t have been defined above.

4.4.3.4 Decision Tables

A decision table is quickly converted into an algorithm by recognizing that

each rule can be associated with a clause of a CASE statement. A rule is

determined to be true or false depending on the state of the condition variables in

the top part of the decision table. Once this is done, a decision table is translated to

into the CASE statem ent, just as the example in Figure 4.23 [Pou88a] has been

derived from the table of Figure 4.18.

In this example, RULE is the number of the rule that was determined to be

true. Note th a t we have set up the rules in the table so that they are mutually

exclusive; ie, only one m ay be true a t any time. If we relax this restriction then

we m ust use the alternate if...then...elsif form of the CASE statement.

4.5 An Approach to Design Data Capture

4.5.1 Introduction

It has been shown how design diagrams used by major software engineering

methodologies map to a program skeleton depicting the flow of control in a final

software product. This is the common goal of the many diverse methodologies surveyed,

just as it is the goal of the designer to produce a working software product from the

initial problem statem ent. I t can be concluded that this requirement for a final code

representation is a common thread that binds the methodologies together. Using this

common thread as a basis for the design of a data model for the capture of software

design information promises to result in an efficient and conceptually elegant tool.

Therefore, the premise of this chapter is th a t it is desirable to capture program design

information in a m anner as close to this representation as possible.

www.manaraa.com

102

C u r r e n t _ s t a t e := S t a r t _ s t a t e ;
W h ile n o t (an a c c e p t i n g s t a t e) o r (f i n i s h e d) do

C u r r e n t _ s t a t e :* S t a t e _ T a b l e (C u r r e n t _ s t a t e , I n p u t) ;
C a se C u r r e n t _ s t a t e o f :

{ p e r fo r m t a s k a s s o c i a t e d w i t h t h e c u r r e n t s t a t e }

Figure 4.22. Code for a Finite State Machine

C a se RULE o f :
1 ; M in im u m _m on th ly_ch arge ;
2 : S c h e d u l e _ A _ b i l l i n g ;
3 : S c h e d u l e _ A _ b i l l i n g ;
4 : S c h e d u l e _ B _ b i l l i n g ;
5 : O t h e r _ t r e a t m e n t ;

end;

Figure 4.23. Code for a Decision Table

However, a conflict arises in two situations. The first is when a particular

methodology, for example, the data flow method, is m andatory or prefered for use in a

given application or environment. The second conflict arises when the designer has not

yet developed the program design to a point th a t he can s ta rt to think or work with a

flow-of-control representation. In these situations any of the above methodologies can be

utilized. I t is simply necessary to provide the tools to convert the diagramming tool that

is used into a structured program format as we have shown in this chapter.

This section first discusses early work on program design diagramming

techniques. As part of this presentation, the shortcomings of the different approaches

are explained. Finally, a data capture technique developed for use with the IDM is

introduced.

www.manaraa.com

103

4.5.2 The P rog ram S tatic S tructu re Diagram

Initial work on capturing program design data centered on a tree-style diagram

th a t depicted how a program would be declared in a highly-scoped language such as

PASCAL. This representation, called the Program Static Structure (PSS) Diagram,

closely resembles the Functional Decomposition software engineering methodology in

th a t it progressively reduces problems by dividing them into subproblems of manageable

size. In the PSS diagram, a node in the tree corresponds to a module that solves some

specific problem.

The information contained in a PSS diagram is sufficient to outline a program as

it appears "at rest," so a skeleton of the module declarations can be automatically

produced. The diagram was originally intended to be used to enforce scope rules for

data types, variable declarations, and module calls. It works well with the Software

Module as a Static Object data model discussed in an earlier chapter.

The shortcoming of this type of diagram is that because it only depicts the

module declarations in the program, there is no way to represent the flow of control.

Furthermore, it is of little use to have the ability to check the scope of module calls in a

diagram when there is no way to represent such a call. Another tool is clearly needed.

4.5.3 The P rog ram D ynam ic S tructure Diagram

Changing the meaning of the arcs in a tree diagram to mean module calls rather

than is declared by, allows flow of control to be represented. In addition, since these

module calls are basically lines of sequential code, by adding the data structure diagram

notation for iteration and selection, we can allow the designer to develop a program all

the way down to the pseudocode level by using this kind of diagram. However, the

diagram is still very useful a t a high level of design, because the lack of any symbol for

iteration or selection as might be expected at such high levels does not restrict the

interpretation of the diagram. The net result is called the Program Dynamic Structure

www.manaraa.com

104

(PDS) Diagram. Using the mappings shown in Figure 4.24 [Ber85], the flow of control

in the target program can easily be captured from the PDS diagram.

Like the PSS Diagram, the PDS Diagram has a shortcoming in th a t while it

does a great job of pictorally representing the dynamic activities of the target system, it

does not have the ability to represent how modules in the program are declared. Of

course, a tool can be created tha t automatically derives an optimal declaration structure

when the dynamic structure is complete, but it is often helpful to have the ability to

specifically view the program ’s declarations during design [Rov88]. For this reason, the

PSS Diagram as well as the PDS Diagram, or their equivalents, are deemed necessary

for data capture in a CASE system.

4.5.4 Data Capture with the IDM

The method of data capture adopted for the CASE prototype includes both the

PSS and the PDS diagrams. The diagrams are closely related in the application system

in that changes made in one editor that effect the view in the other are automatically

made by the CASE system. This combination of PSS and PDS diagrams gives the most

powerful representation of the program design, and retains the designer’s ability to

customize each type of program structure to his requirements.

The IDM is structured to reflect the flow of control in the target system. The

foundation of the IDM consists of linking calls made by a module to candidate modules

in the archive tha t are capable of filling the need of that call. Using the mappings

shown above from the pictoral representation of the program design to pseudocode for

the target system, the IDM is able to capture control data directly from the PDS

diagram and map it to the data model in the database. The pseudocode is then stored in

the alternative object of the IDM as a sequence of calls. Data related to the declaration

structure is likewise captured from the PSS diagram and stored in the alternative

object.

www.manaraa.com

105

S E Q U E N C E

nfk
A S E Q U E N C E

d o B .
d o C .

A E N D

I T E R A T I O N S E L E C T I O N

A IT E R A T I O N
d o B .

A E N O

[8 1 | C U

A S E L E C T I O N
d o B:

A AL T
d o C ;

A E N O

Figure 4.24. Symbols for Sequence, Iteration, and Selection

c
C a l l I n t e r f a c e A l t e r n a t i v e

Figure 4.25. Icons for Calls, Interfaces, and Alternatives

The PDS diagram further contains an accomodation that provides for a

meaningful representation for the three types of objects that comprise the IDM. In

Figure 4.25, the icons representing these three object types, the call, the call with an

interface bound to it, and the call with both a bound interface and bound alternative,

are shown. When the program designer encounters a need for some service in a

program, he represents tha t need by creating and placing the call icon in the PDS

editor. As the abstract request for service is further developed, the designer either

locates an existing interface in the archive to meet that service, or he develops an

www.manaraa.com

106

interface of his own. At that point, he may bind the interface to the call; in the PDS

editor this is reflected by replacing the call icon with the interface icon. Finally, when

an alternative for the interface is decided upon, and, in turn, bound to the call, the PDS

editor replaces the interface icon with the alternative icon. Notice that the version of the

alternative that is currently in use is identified in the diagram.

An example PDS diagram representing a partially completed mail facility for the

MTS operating system is shown in Figure 4.26. The actions of the call in the root node

is fully defined, as version #2 of the "MTS" alternative for the "Mail" interface is bound

to the call object. The are three lines of code in that alternative:

Call Asynchronous Input;

Cadi Sort?

While (not buffer empty)

Call Output;

The call in the first line of code is filled with version #0 of the "Asynchronous"

alternative of the interface "Input;" the code portion of that version contauns:

While (incoming messages)

Call Read?;

The iteration gaurd, "incoming messages," is a Boolean variable in the scope of the

alternative that has been specified by the user. The second line of code of "MTS Mail"

is to a call named "Sort?" which has neither a bound interface nor bound alternative.

The Kleene star marking the third line of code in "MTS Mail" indicates another

www.manaraa.com

107

MTS
Mail

OutputASvnc
Inp u t

S o r t?

v.O

Read?

Figure 4.26. Example PDS Diagram

iteration statement. This iteration gaurd, as above, is a Boolean variable that has been

specified by the user. The call made in this iteration currently has the "Output"

interface bound to it.

Because the PDS and PSS diagrams so closely model the types of objects

represented by the three part IDM, the process of extracting design data from these

diagrams is straightforward and efficient. Furthermore, all that is required to fully

update the designer as to the progress of his program design is a glance a t the

appropriate diagram. This ability to quickly convey large amounts of information in a

single diagram is the quality of visual depth, and is a major distinguishing feature

among visual methods [Buh89]. Visually deep methods provide most of the information

through shapes and relationships in the pictures. Visually shallow methods provide most

of it in related text or in such a distributed fashion that its impact is lost. A block

diagram in which boxes are only used for partitioning is visually shallow; the PDS

diagram (and its accompanying PSS diagram) are visually deep becuase they use

www.manaraa.com

shapes and spatial relations to effectively achieve the desired affect.

www.manaraa.com

5. CLASSIFICATION OF SOFTWARE COMPONENTS

5.1 Introduction

Once the software design has been captured in the CASE system, it is necessary

to store the information in a m anner th a t allows the information to be retrieved quickly

and efficiently. This is especially true in a CASE system th a t supports the reuse of

software, since the designer would like to know as early as possible in the design

process whether or not the component he needs already exists. If this is so, he can

substitute the component in his program without having to develop it himself.

Organizing available software routines into a library of reusable components

may provide the program designer with the tools and opportunity to incorporate "old

code" into his design. However, central to the problem of designing an appropriate

catalog of reusable components is the problem of rigorously specifying the allowable

uses of each component. That is, the capability to specify the class of contexts into

which a given component can meaningfully fit, and specifying the kinds of components

that can fit within a given context.

Classification is the act of grouping like things together. All members of a group,

or class, share a t least one characteristic tha t members of other classes do not possess.

In this way, classifying objects displays the relationships among classes of things. A

classification scheme, therefore, is a tool for the systematic ordering of things for the

purpose of displaying relationships among them. These relationships determine where

the things are stored and how they are later retrieved.

With this in mind, several observations and suggestions for a systematic

ordering of software components have been proposed. However, The issue of software

classification is particularly complex. Unlike VLSI hardware components, where the

function of a component is fairly specific, in software there is an added difficulty

involved in classifying a component due to the overall ambiguity and generality of

109

www.manaraa.com

110

software modules. There has been success identifying simple m ath and I/O routines for

software catalogs. But while utility functions and some ADTs are well understood, a t

higher levels of design a module is composed of more abstract ideas and complex

algorithms, and m ay have many intermingled functions and side effects.

Most software retrieval techniques depend on the use of software keywords to

classify the software component and serve as indices for retrieval. 1 These keywords

provide both a broad-based description and a formal specification of the module in an

attem pt to define the uses of the module for an appropriate application. The

identification of a software classification mechanism that is both suitable for indices in

the software archive and is usable in a viable software retrieval strategy is the subject

of this chapter. The following discussion is an overview of the options surrounding the

classification issue and details the use of keywords for the classification of software

components.

5.2 Software Classification Options

5.2.1 The Interface Definition of a Module

As part of object-oriented programming languages such as Modula-2 [Wir85] and

Ada [Pyl81] the ability to separate module specifications and module definitions into

separate compilable units has been forwarded. In this context the ModSpec and ModDef

are analogous to the interface and implementation in the molecular view of design

objects. In the IDM view of the two roles of the interface, the module specification is no

more than the interface portion of the module used in the declaration role.

In keeping with the object-oriented philosophy, the ModSpec and ModDef are

physically kept separate in the design of programs. The potential user of a software

component is allowed to view only the part of the module th a t is revealed to him in the

’The organization of these indices and retrieval mechanisms is the subject of a
later chapter.

www.manaraa.com

module specification; the implementation details of the module are protected and

inaccessible. Furthermore, the gram m ars of these languages require that little more

than the syntax of the module declaration be part of this specification. Information

other than this declaration, for example, on the function or constraints on the module, is

not available, thereby severely restricting what can be used for classification of the

module.

5.2.2 Adding to the Interface Definition

In recognizing the need for more information, there have been several proposals

that expand the amount of descriptive information included in the ModSpec or interface.

According to [Mat84], in addition to the module specification of each routine, there

should be lists of data describing:

1. Other modules of code required to execute the software module.

2. The language, operating system, runtime utilities, and input/output devices.

3. Automatic interrupts that effect the module.

4. The amount of memory required by the software.

These identifying factors significantly increase the amount of information available for

the classification of the component. Of course, the more information available for

classification, the more accurate the retrieval strategy can be when searching for

candidate components to m eet the current requirement.

According to [Len87], a software component should be identified by a more

formal specification. The specification should include:

1. A functional overview.

2. The syntax of the module interface.

3. A formal operations semantics describing the actions of the module.

4. All dependencies.

5. An example.

www.manaraa.com

112

While these observations are important in tha t they identify additional means that may

be used to uniquely identify a module, no technique for cataloging or retrieving the

modules is included in their research.

In the schema developed by [Che84], each program entity has a name and a set

of attributes, which are essentially (type, value, version) triples. There are some 25

distinct attribute types th a t range from descriptors, data types, and syntax

specifications. This schema is not much unlike other techniques, except for the inclusion

of a version number in the triple. This version number indicates how m any times that

attribute has been modified.

5.2.3 Formal Semantics

Finally, there are various formal methods th a t have been proposed for the

classification of software. In [Lit84], there is a formal specification language for

software that is based on a formal algebra. This language uses catagory theory from

the field of mathematics to deal with properties characterizing classes of algebraic

structures. The argum ent is tha t catagory theory can provide the formalism required

for specifying the externally viewed behavior of software components.

[Gog84] and [Der85] also propose to make formal denotational semantics or

predicate calculus specifications, complete with preconditions and invariant assertions,

part of a program library of frequently performed tasks. These methods have an

advantage in that they can be shown to be correct by well-known proof techniques. In

the words of [Gog84], there is "no junk" (everything has a purpose) and there is "no

confusion" (the correctness of the function and classification criteria is provable).

An advantage of these methods is the accuracy that can be attained with formal

semantic nomenclature. Furtherm ore, the exactness of the result may perm it most of

the process to be completed automatically, including parsing design objects for input into

the schedule and mapping formal requirement specifications to formal definitions of

www.manaraa.com

113

reusable parts. In the future these methods may well prove to be a required part of the

software engineer’s toolkit.

However, [Lit84] expounds on several shortcomings of these techniques. Any

method used for classification should integrate the design and m anagement of reusable

components into proven current design techniques. The axioms of catagory theory, of

course, have no equivalent in programming languages. Consequently, ensuring that a

component implements the semantics of the theory will require additional tools in the

development environment. Furthermore, because of the conciseness, power, and

accuracy of formal semantics and the predicate calculus, they are very complicated for

persons untrained in their use. This is a important factor in determining the usability

and wider applicability of these techniques.

5.3 Use of Keywords for Software Classification

The most widely accepted means for classifying software tha t can be understood

by the general user is the keyword list. However, due to the natural ambiguity and

generality of software there is no accepted agreement on a standard technique or set of

keywords for this purpose.

There are two general variations on the keyword option. These are to have a

fixed number of keywords tha t take the role of attributes, each attribute assuming a

value that describes the software component. An example would be to have Function as

an attribute of the component, with a possible value of Sort. The other option is to have

a variable length list of single keywords that are totally up to the designer’s discretion.

A routine might then be classified by a list of keywords such as Sort, Quick,

Integer_Array, Pascal, MVS. Such a method is similar to the one tha t authors use to

classify their journal publications. The choice of method used depends on the retrieval

strategy and interface mechanism the library designer wishes to use.

www.manaraa.com

114

F u n c t io n Objects M e d iu m S y s te m t y p e Functional aran
a d d a r g u m e n t s a r r a y a s s e m b le r a c c o u n t s p a y a b le a d v e r t i s in g

a p p e n d a r r a y s b u f f e r c o d e g e n e r a t io n a c c o u n t s r e c e iv a b le a p p l i a n c e r e p a i r
d o s e b a c k s p a c e s c a r d s c o d e o p t i m i z a t io n a n a ly s i s s t r u c t u r a l a p p l i a n c e s t o r e
c o m p a re b la n k s d i s k c o m p i l e r a u d i t i n g a s s o c i a t i o n
c o m p le m e n t b u f f e r s f i l e D B m a n a g e m e n t b a t c h j o b c o n t r o l a u t o r e p a i r
c o m p re s s c h a r a c t e r s k e y b o a r d e x p r e s s io n e v a lu a to r b i l l i n g b a r b e r s h o p
c re a te d e s c r ip to r s l in e f i le h a n d l e r b o o k k e e p in g b r o a d c a s t s t a t i o n
d e c o d e d ig i ts l is t h i e r a r c h ic a l D B b u d g e t in g c a b l e s t a t i o n
d e le te d i r e c to r i e s m o u s e h y b r i d D B c a p a c i t y p l a n n i n g c a r d e a l e r
d iv id e e x p r e s s io n s p r i n t e r i n t e r p r e t e r C A D c a t a l o g s a le s

e v a lu a te f i le s s c r e e n le x ic a l a n a ly z e r c o s t a c c o u n t in g c e m e te r y
e x c h a n g e f u n c t io n s s e n s o r l i n e e d i t o r c o s t c o n t r o l c i r c u l a t i o n
e x p a n d i n s t r u c t i o n s s ta c k n e t w o r k D B c u s t o m e r i n f o r m a t i o n c l a s s i f i e d a d s
fo rm a t i n te g e r s t a b l e p a t t e r n m a tc h e r D B a n a ly s i s c l e a n in g
in p u t l in e s t a p e p r e d ic t iv e p a r s in g D B d e s ig n c l o t h i n g s to r e
in se rt l i s ts t r e e r e la t io n a l D B D B m a n a g e m e n t c o m p o s i t i o n
jo in m a c r o s re t r ie v e r c o m p u t e r s t o r e
m e a su re p a g e s s c h e d u le r
m o d ify
m ove

.

Figure 5.1. The Faceted Classification Schedule

Recent work by [Pri87] and [Bur87] has been to identify candidate keywords for

software classification. The listing of six keyword categories in Figure 5.1 is part of the

faceted classification and retrieval technique proposed in [Pri87, Pri88]. Along with each

of the six classification categories is a list of values th a t the user selects as the most

applicable entry for the piece of software that he is classifying. The software component

is then identified by the six-tuple comprised of the values for these six categories.

However, since the selection of values for these keywords is subjective, the same

component may be classified in different ways by different people. Without some means

to group synonomous values of keyword attributes, a reusable component may not be

retrievable in a given situation. In fact, an on-line thesaraus is used for this purpose.

The authors further studied this problem by asking a group of graduate students to

classify a set of modules, and experienced from 100% agreement on the keyword for

function to a 60% correlation on the keyword for medium. This finding substantiates the

www.manaraa.com

115

problem of trying to rigorously classify relatively abstract objects.

Figure 5.2 displays the desirable attributes about reusable components according

to [Bur8 7]. The method suggested in their research is to combine two alternate

mechanisms. The first is to permit the user to identify up to five descriptive keywords

for each component. The actual length and contents of this keyword list is not

restricted. The second mechanism is a category code system similar that used by

libraries and publications such as Computing Reviews. Details of this category code

schema are not given, and the authors admit th a t they have not been able to

standardize the types of reuse information required to document components in a

Reusable Software Library (RSL). They also suggest that standardizable techniques,

such as objective metrics, are also needed to help system librarians rate all component’s

attributes on an equal basis. This would assist in the correlation statistics experienced

by [Pri87].

5.4 Allowable Values for Keywords

The problem of allowable values for keywords is primarily one of vocabulary

control. Without some restrictions on allowable values of attributes or keywords, the

search space can become quite large and the time required for searching the lists of

these keywords unacceptably slow. In the faceted schema, the user m ust choose from a

list of allowable values for each of the six attributes. This process is made easier by

assistance from a thesaurus, and effectively restricts the search space for each

attribute.

Without a thesaurus or other automated assistant, it has been pointed out that

the use of controlled vocabulary can actually be less efficient than with an uncontrolled

vocabulary [Fra87]. The reason is that the user of the system must be familiar with the

classification schedule and retrieval mechanism in order use them effectively. The use of

a somewhat artificial controlled vocabulary, where conventions must be learned, may be

www.manaraa.com

116

Attributes Description

UNITNAME

CATEGORY CODE

MACHINE

COM PILER

KEYWORDS

AUTHOR

DATE CREATED

LAST U PDA TE

VERSION

REQUIREM ENTS

OVERVIEW

ERRORS

ALGORITHM

DOCUM ENTATION
AND TESTING

The unitname is the name of the procedure, package, or
subroutine.

The catcode is a predefined code that describes the
functionality o f the component.

The machine signifies the computer on which the
com ponent was programmed.

The compiler signifies the compiler used during
development o f the component.

Keywords are programmer-defined words that describe
the functionality o f the component.

The author is the person who wrote the component.

The date created is the date the component was
completed.

The last update is the date the component was last
updated.

The version is the version number o f the component.

The requires field contains information about any special
requirements o f the component (eg. other components
that must be available).

the overview o f the component contains a brief textual
description of the component.

The errors field contains information about any error
handling or exceptions raised in the component.

The algorithm field contains the algorithm used in the
design of the component.

The documentation and testing field contains a
description of available documentation about the
component and a description o f test cases.

Figure 5.2. The RSL Classification Schedule

a barrier to the effective use of a library retrieval system by anyone who is not an

information specialist. The automated assistants help break down this barrier by

providing a certain portion of the expert knowledge that normally requires the presence

of a full-time librarian.

The allowable values of keyword attributes are not the only concern. The format

and data types of the attributes are also critical in determining the types of searches

that may be supported as well as the subsequent efficiency of these searches. For

www.manaraa.com

117

example, retrieving all module interfaces with Function=Sort is a straightforward

search easily implemented in any database system. However, locating all interfaces

designed after a given date may require a mathematical comparison of values of type

Date, a value tha t may be comprised of the three fields Day, Month, and year. While

this option may be complex to implement, choosing to store this data type in a Julian

form at can reduce complexity of the search algorithm significantly. The allowable

search operations and retrieval methods should be evaluated before the allowable values

of the keyword attributes are determined.

5.5 Approaches to Software Classification with the IDM

5.5.1 Introduction

There are two complete software classification techniques th a t are implemented

as part of this research. The first technique discussed is the static classification

schedule, which consists of a set of pre-determined keyword attributes, the values of

which provide a broad description of the software module. This method has the

advantage in tha t it encourages the designer to provide a description of the module in

each of the chosen areas. This method is also somewhat more straightforward to

implement, particularly with regards to a consistent user interface to the classification

schema.

The second method tha t was implemented is based on a variable length list of

keywords, similar to that used by journal authors when giving subject keywords for

their articles. Each module has a list of single keywords tha t describe it; this list can be

of any length. This method has the advantage in tha t it is much more powerful than a

predetermined list, but implementing an efficient search mechanism and interface to

this schedule is correspondingly more complicated. This technique also has the potential

to be abused by a designer, who may simply fail to provide any keywords, or may give

www.manaraa.com

118

several that are so closely related to each other as to be worthless.

5.5.2 Static Classification Schedule

The Static Classification Schedule used in this research is based on the work

done by [Pri87, Bur87, Rei87], as well as personal experience. This method uses the

two-tuple technique of (attribute, keyword) to describe various qualities of each software

module. There are six keywords used for describing interfaces and for making

constraints in calls. These are: function, major input, major output, medium,

environment, and language. "Function" is the most important of these, and describes

the general action of the module. "Medium" relates to the larger data structure that the

routine acts on; for example, a ring buffer or sparse matrix. "Environment" is wher'

the routine works; for example, a specific operating system. "Language" refers to the

source code language.

The use of the keywords in this implementation is not in any way constrained

by the system, in the sense that the user must make specific entries or choose valid

attribute values from some list. I t is also important to remember th a t these keywords

were derived from a number of different sources and are not conclusive. These

particular keywords were chosen only to be representative of a classification schema

that might be used in a functional CASE system and demonstrate tha t the IDM model

can operate, in conjunction with a software library, with such a schema.

For the classification of alternatives, three keywords are used. These are time

complexity, space complexity, and component. Object code size could also be used, but

this was not implemented. The keywords, for time and space complexity are m eant to

contain values such as 0(log N) and O(n-squared), but like the keywords for interfaces,

there is no restriction th a t enforces this intention. The keyword "Component" refers to

the logical part of the system that the routine works in, as opposed to a physical part;

for example, the Output Manager. Unlike the keywords used for interfaces, these

www.manaraa.com

119

keywords were derived solely from personal experience.

The advantages of this selection of keywords are many and diverse. First, these

keywords are some of the most widely accepted classification attributes for

retrievability. Second, they represent a broad description of the module rather than

perhaps concentrating on one area, such as function. Third, the classification attributes

can be incorporated into the user interface for the prototype CASE system in an elegant

way. How the prototype implementation incorporates this schema into a practical

interface is discussed in Chapter 8 and shown extensively in the Figures of that

chapter.

The IDM is designed to accomodate the classification schema directly in the

object structure. The interface and call objects both employ the six descriptive keywords

described above; the alternative and the call both employ the three keyword scheme.

The difference is in how the call uses the keywords; in the call the values of these

keywords serve to constrain the interface and alternative objects tha t m ay be used to

meet the call, where in the other two objects the keywords are exclusively descriptive.

The call has the further responsibility of recording the software requirements for

documentation purposes, a task adequately accomplished by the nine keywords and

comments stored in the call object.

5.5.3 Variable Keyword Lists

The second option implemented for the classification schema is based on the

variable length list of keywords technique. In this technique, the designer assigns any

number of single descriptive words to each object. These keywords can relate to any

attribute of the software; an example of such a list is shown in Figure 5.3. As in the

static schedule above, the list of keywords is recorded in the IDM as part of the model.

Each of the interface, call, and alternative objects contain a keyword list; it is up to the

retrieval mechanism to match those keywords in the call to those in the interfaces and

www.manaraa.com

120

alternatives when the designer is attempting to fill a call with a reusable component.

This technique was implemented as part of the research but was not chosen for

the final implementation because it has the disadvantage of not encouraging or

enforcing a broad classification of the module. Furtherm ore, a consistent interface

providing uniform access to such a list is difficult with available software tools. It was

important, however, to determine tha t the IDM could function in conjunction with this

method.

www.manaraa.com

121

D e n t il a g|
S o r t
I n t e g e r _ A r r a y

MVS_Operating_Syetem

M e s e a g e _ B u f f e r

IO _Subsystem

PASCAL

C r e a t e Keyword

D e l e t e Menu

Keywords are:

Figure 5.3. Describing a Module with a Keyword List

www.manaraa.com

6. RETRIEVAL OF SOFTWARE DESIGN DATA

6.1 Introduction

Retrievability is the degree to which a software module can be stored, selected,

and used by users who have no prior knowledge of its existence. The retrievabiltiy of

software in a CASE system supporting reuse further includes the mapping of some

conceptual or abstract specification of w hat is to be accomplished into a very specific

data representation and algorithm that can be located in the software archive to

accomplish the task a t hand.

In short, in order to use a software module, you m ust be able to find it.

The issue of fast and efficient data retrieval is a major consideration in the

design and analysis of database systems [Dat85a, Dat85b, Haw84, U1182].

Consequently, the combination of indexing methods and data retrieval techniques in

traditional applications is well understood. These applications, however, generally

presuppose th a t the search space is well-defined and exact. On the contrary, the

designer of a software system in a reuse environment seeks to retrieve software

components based only on a vague understanding of w hat is needed and with no

knowledge of what is available to meet tha t need. This chapter addresses techniques of

indexing reusable components so tha t the conceptual mapping from requirements to

availability can be made a reality.

6.2 Accessing Design Data

6.2.1 Desired Operations

The retrieval of design objects is required for two purposes; supporting the

design process and supporting interactive queries about the design. These queries may

be of an ad hoc nature to meet a variety of requirements, or may be systematically

made as part of the automatic generation of design documentation and reports.

122

www.manaraa.com

123

Retrieval of design objects during the design process is most often hidden from

the user by the graphical editor or design tool. Since these operations repeatedly access

closely related data, these retrieval operations are most efficient when the design data

is clustered, or semantically stored in an object-oriented manner. Administrative and ad

hoc queries are more often of a global nature, typically entailing questions about the

entire design. Such queries are more efficiently handled by a relational database, in

which efficient algorithms and operators are available for accessing large quantities of

information. For most of the standard data retrieval situations in a CASE system, the

retrieval issue is similar to the arguments found with the data modeling issue; there is

a trade-off between grouping data as objects for design operations versus grouping data

as relations for global operations and queries.

In a CASE system supporting reuse, however, there is the unique problem of

having to retrieve design objects without necessarily knowing w hat is being sought, nor

w hat is available. There exists a need for an object retrieval strategy tha t is flexible

enough to be used early in the design process by providing the program designer with

hints and other assistence tha t may lead him to candidate reusable components. The

retrieval mechanisms discussed below are therefore intended to m eet not only the usual

retrieval needs of the design process, but are specially intended for use in a reuse

environment in situations where program requirements are ill-defined.

6.2.2 Indexing Strategy

One possible indexing strategy is to have the supporting database maintain an

index for every classification category possible. This allows for the most speed and

flexibility over the widest range of queries. For example, in the faceted classification

schedule of [Pri87], a total of six indices would exist, one for every entry in the

classification tuple. This allows very rapid access for queries specialized to only one

entry in the tuple, assuming wild-card values are valid for the other entries.

www.manaraa.com

124

However, such a technique is not without its disadvantages. In this case, the

problem is essentially one of a time/space tradeoff; for the luxury of fast response times

for specialized queries, the cost is the memory and disk space required for the indices as

well as other overhead required to maintain the indices. For classification schedules

with considerably more classification attributes, there m ust exist a point where

maintaining an index for the additional attributes is no longer practical.

At the other extreme, there is the option of not maintaining an index for each

attribute, and using sequential searchs to locate the information. Clearly, for large

search spaces or for queries th a t are commonly executed, this option is not desirable

because of the time tha t is required for these linear searches.

Interestingly, several research efforts tha t have discussed the software

classification and storage issues have neglected to address the issue of retrieval. For

example, while [Len87] is quite concerned about the classification of the reusable

building blocks in an operating system environment, no means for the retrieval of these

blocks during the design process is discussed. Of course, some indexing or retrieval

technique m ust be included as part of the complete CASE system. The following section

introduces candidate retrieval techniques and outlines some of the advantages and

disadvantages of each.

6.3 Indexing Techniques

6.3.1 Software Catalogues

The simplest indexing technique is perhaps those used by the published catalogs

of software utility routines. Such catalogs are found as part of the user m anuals of

large computer systems, or are published in book form as an accessory to the computer

system. Examples are the m ath packages available on the mainframe computers at

most research centers [DeB85, Cor87], and program libraries such as for the Apple or

www.manaraa.com

125

IBM series of personal computers [Rug86].

These software catalogs use a table of contents to list the available routines in

the library. Such routines are usually grouped into "chapters" by function, such as

placing all trigometric utilities together, all sorting functions together, all graphics

utilities together, etc.

The method of retrieval in software catalogs consists of having the user scan the

table of contents for the routine tha t meets his need. The grouping of related routines

into chapters makes this process fairly straightforward, and since the user is

accustomed to using the table of contents in books, he is generally comfortable with the

method and able to use it with a minimal amount of instruction.

The primary disadvantage with the software catalog is that it is difficult to

autom ate and incorporate into a CASE environment. In addition, this method only

works well with a small number of routines. I t is not practical to expect a user to

m anualy browse through a library consisting of thousands of candidate components, nor

is is reasonable to expect to give him enough information in the table of contents to

distinguish between a large number of closely related components.

6.3.2 Multilists

One technique which is exceptionally flexible and straightforward to implement

within the framework of conventional database systems is the multilist indexing

structure. A multilist index, as shown in Figure 6.1 [Wie87], consists of an index record

for each value of the attribute th a t describes the software component. From that index

record there is a chain of pointers to records, each containing the address of a software

component with that value for the attribute. 9 Queries of the type

9 Again, a tradeoff exists between the size of the directory (multilists) and the
length of the search in the main file. The opposite of the multilist structure is
the inverted file, in which there is one index record for each value of the
keyword, and the length of each multilist is one record.

www.manaraa.com

126

items

n 2 items

nm items

Figure 6.1. A Multilist Index

Select Interface Names

From Interfaces

W here Function= Sort

result in traversing the chain of records for Function= sort in order to quickly provide

the keys for the required interfaces.

When two or more search criteria are specified, such as in queries of the type

Select Interface Names

From Interfaces

W here Function= Sort

And Algorithm= Quick

a join operation is used by the database to merge the two resulting lists of candidate

components. The join operation compares the two lists and extracts the keys of the

www.manaraa.com

127

components tha t are common to both lists.

This technique has limitations when the number of possible values for each

attribute is large and is allowed to grow. In this case the amount of space and overhead

for maintaining the multilist structure becomes unacceptably excessive. For this reason,

the maximum length of the multilist in applications system s is often controled.

However, because the capability for implementing the multilist index is often a one of

the features of the supporting database system , and because the method is well

understood, it is a popular technique.

6.3.3 Cluster Theory

Cluster theory is a file organization technique for document libraries th a t has

had an important influence on several of the software library retrieval strategies to be

discussed below. In cluster theory, documents carrying similar content descriptions are

grouped into clusters [Sal75]. These clusters are identified by a representative cluster

profile, or centroid. The centroid is a weighted set of term s derived from the descriptive

vectors from the documents included in the cluster.

The descriptive vectors of a document come from the classification method used

for the documents. The vector is the result of some algorithm th a t compares lists of

keywords, catalog numbers, or some other criteria. In software, m any of the

classification methods classify the component by a fixed set of attributed keywords. By

imposing an ordering on these keywords and considering the values for the keywords as

an n-tuple, the result is a document vector as required for this and other classification

and retrieval strategies.

A search in a clustered file proceeds as follows. First, the target vector is

compared with the index file of centroid vectors. Second, documents within the candidate

clusters are ranked in decreasing order according to their closeness to the target vector.

Finally, individual documents are retrieved and examined. It is clear th a t the "depth" of

www.manaraa.com

128

the search can be easily controlled in a clustered file because it is possible to search

only the "best" cluster, or, if desired, the top two clusters, or the top ten, as necessary.

In traditional cluster theory the clusters are automatically generated by the

database system, and a document is allowed to occupy a place in more than one cluster.

Furtherm ore, documents may be moved from one cluster to another if it should prove

useful. The physical grouping of the documents in secondary storage is also assumed to

be managed by the database system in order to optimize the number of disk accesses

required to retrieve all of the documents in a cluster. However, in some of the retrieval

mechanisms utilizing clustering techniques that are discussed below, these requirements

m ay be relaxed.

6.3.4 Associative Networks

An associative network is a tree structure in which the internal nodes of the

tree form the index for the components [Dep83]. This method requires a set of

"features," or (attribute, value) pairs, that can uniquely characterize each component. If

we think of the set of these features as basis vectors of n-dimensional space, then each

element of library can be viewed as a point in the space. The vector th a t describes a

given element is called the pattern vector.

Each software component in the n-dimensional feature space having a similiar

descriptive vector is grouped into clusters; the clusters are represented as a hierarchical

tree. The root of the tree determines the search node at the first level down the tree by

comparing the pattern vector of the desired element to each of the first level nodes and

taking the child that most closely matches the target. Further levels of the tree are

traversed by sequentially accessing the "closeness" of the next descriptor in the pattern

vector with each of the immediate successors of the current tree node. P art of a sample

associative tree index for software is shown in Figure 6.2. The goal of the index

traversal is to identify the cluster of library components that has a feature vector most

www.manaraa.com

129

SOFTWARE

UTILITYAPPLICATIONSYSTEM

ACCOUNTING MANAGEMENT SCIENTIFIC

/ \ / X A

Figure 6.2. An Associative Tree for Software

closely matching the target pattern vector.

The fundamental problem with this technique lies in tha t the values assigned to

the feature vectors in the associative network m ust be orthagonal. Orthogonal values

occur when only one value for each attribute could be considered to accurately describe

a component. If the values for an attribute are orthogonal then classification of the

components and their subsequent grouping into clusters is easy. If this is not so, several

problems arise. The first problem is tha t if more than one value could be considered to

describe the component, then the suggested assciative tree technique does not work

because a component may "belong" in several leaves of the tree. The second problem

lies in the retrieval process. If, for any feature more than one value may be "close" to

the target value for that feature, then all those subtrees in the index m ust be searched.

While this can be done, and is actually allowed in traditional cluster theory, within the

associative network framework the associative tree becomes a relatively unimportant

part of the whole process. Furthermore, some heuristic to define the notion of

"closeness" of feature vectors needs to be defined. While several known measures may

well serve this role, none is identified as being appropriate for the associative tree

technique.

www.manaraa.com

130

6.3.5 Faceted Schema

The faceted schema proposed by [Pri87] and shown in Figure 6.3 is based on the

assumption th a t collections of reusable components are very large and growing

continuously, and tha t there are large groups of similar components. As in the

associative tree index above, the faceted schema requires a set of descriptive (attribute,

value) pairs th a t describe each software component. A facet is the term given to these

attributes. The schema also includes, however, a metric for conceptual distances

between term s in each facet that is used to help select between closely related

components.

The classification mechanism proposed by [Pri87], consisting of a six-tuple of

(attribute,value) pairs, is described in a previous chapter. The faceted index is

represented as a conceptual graph th a t m easures the closeness among terms in the

facet. Nodes in the directed acyclic graph represent general concepts related to the

software facet. Leaves in the graph are term s for the general concept. Arcs connecting

the general concepts and the concept term s have a weight assigned to them that

represents the "closeness" of a concept to a particular term. Unlike the associative tree

technique, where the closeness metric is left undefined, in the faceted implementation

the weights relating the closeness of two modules are user-assigned.

One practical application of a closeness measurement occurs during retrieval. If

a particular term in am entry does not match any available description in the collection,

the system tries the next most closely related term to retrieve descriptions of closely

related items. One major drawback to this technique is tha t constructing conceptual

graphs for more than a few concepts and terms is very time consuming. However,

because the conceptual graph allows for synonyms of concepts to be systematically

accessed, there is no requirement for the terms describing each concept to be

orthagonal.

www.manaraa.com

131

100
100100 100

! moving something
from its original
place

/ \
W , ? N

notion of
exchangenotion of

replacem entnotion of
enumeration,
count, move
along a scale

substituteaddm easure move

Figure 6.3. A Faceted Schema Index

6.3.6 Classification Matrix

[Mit87] states that software can be classified in two ways:

1. The applications in which they are used.

2. The task they perform.

Applications which are alike, such as accounting programs, can be combined into a

common application category. Programs which are alike according to the task they

perform constitute a task category.

In [Mit84] a matrix organization based on these two criteria is suggested for the

index. Columns in the matrix represent task categories, and rows in the index represent

application catagories. Each software component in the archive is classified by

application and task, and the appropriate entry for it is made in the matrix. Candidate

reusable components are then retrieved by identifying the task and application area

required, and looking up the components in the matrix.

www.manaraa.com

132

This m atrix organization for the index can clearly be viewed as a table, and

organized into database relations in a relational database system. This is a practical as

long as the software components can be sufficiently identified by the two stated criteria.

For large software archives, however, the number of components occupying a bucket in

the table can become quite large, and searching the buckets no longer practical. To

address this problem, and to accomodate the classification mechanisms tha t rely on

more than two classification criteria, n-dimensional matrices will have to be formed

[Mit87]. However, this organization is non-trivial to implement in a relational system.

6.3.7 Artificial Intelligence Techniques

Recognizing tha t retrieval of software components is a key problem in software

reusability, some efforts to apply techniques from other fields have been tried. While

such efforts are only partially related to this research, it is worth recognizing that work

is currently ongoing in this area. For example, one retrieval technique combines the the

artificial intelligence [Cha86] and database [Tsi82] concepts of a

association/generalization [Mit87].

In such a system, "associations" are formed between software modules based on

whether or not they are similar to each other in some predefined way. The details of

this similarity metric are not given. However, if there is an association between two

modules, then they are considered to have a common ancestor a t the next higher level

of generalization. Candidate components are located by navigating down the

generalization hierarchy, progressively and interactively refining the requirements of

the target component until the candidate modules in the database are located.

6.4 Discussion

www.manaraa.com

133

6.4.1 Matching Needs with Available Components

In the retrieval strategies discussed above, the common goal of matching a

high-level, possibly incomplete description of a needed target component with candidate

modules from the software archive is approached. This issue is a t the crux of the

reusability problem. Ultimately, the usefullnes of the retrievability strategy is a function

of the criteria used to specify modules and requirements.

As can be noted from the previous section, the retrieval strategy is dependent on

many other factors. The first of these comes from the problem of determining the

amount of resources in the database to dedicate to indices and retrieval algorithms.

When evaluating this decision, the types and frequency of queries and design operations

must be considered. The desired flexiblity of the retrieval process m ust also be

determined; some methods will retrieve many related modules for the designer by using

indices based on conceptual networks, while other methods require a more precise

definition of the required component and more interaction from the user. Some of these

dependencies are further discussed below.

6.4.2 Dependencies of the Retrieval Techniques

6.4.2.1 On the Classification Schema

Each of the retrieval techniques discussed above depends in one form or

another on the method used to classify the software components. The m atrix index,

for example, presupposed a two dimensional classification schema, whereas most of

the techniques worked with a n-dimensional vectors of descriptive keywords. It is

clear th a t some retrieval techniques are not capable of functioning with

classification mechanisms other than those for which they where designed. It is

desirable, of course, to employ a retrieval technique that is not only efficient, but

flexible enough to operate under a variety of conditions.

www.manaraa.com

134

6.4.2.2 On the User Interface

The ease and efficiency with which a reusable software component can be

included in a new application depends in many ways on how the user interacts

with the CASE system via the interface to the software library. Obviously, an

interface that helps the user retrieve candidate components based on keywords will

be quite different from one th a t retrieves components by formal mathematical

methods.

Methods based on keywords m ay help control the size of the attribute-value

vocabulary and make data entry easier by providing pull-down menus from which

values for the keywords may be selected. Text entry boxes and automated

thesaurus-based assistants are also possible [Arn87, Iso87]. Some interface

techniques based on artificial intelligence are also being used; the user m ay query

the database through a natural English dialog with a query processor [Bur8 7]. A

sample session with such a system is shown in Figure 6.4.

One interesting approach in system s tha t utilize weighted networks or

descriptive vectors is to assign the weights to attributes by means of a bar graphs

[Bur87]. The user indicates which arcs or attributes are most important by

increasing the "barometric" scale in the bar graph associated with tha t attribute,

as shown in Figure 6.5.

The key point of the discussion of these dependencies is tha t the retrieval

method is often very visible to the user of the CASE system through the interface,

and it is often this interface th a t actually determines the usability of the system.

Developing a user friendly and practical interface, therefore, is a major concern

when considering potential methods of software retrieval.

www.manaraa.com

Request Response Action

by " s u k " do you m ean "s ta ck "?
— Current series ot requests: ^

I need a stak package. 1 need a stack package. The unitnames and overviews
ot all stack packages are displayed.

— Current series o< requests: —

Only display those that
Implement garbage collection

l need a stack package.
Only display those which

implement garbage collection.

The above search is pruned
so that only those stack s

that are managed are displayed.

- Current series of requests: -

When were they written,
and what version are they?

1 need a stack package.
Only display those that

implement garbage collection
When were they written,

and what version are they?

In addition to unitnames and
overviews, the dates and
version num bers of the

packages from the previous
search are displayed.

Figure 6.4. A Natural Language Query Session

SCORE SYSTEM SA R O S C T E R S '

Figure 6.5. The Relative Importance of Keywords

6.5 A pproaches fo r u se w ith th e IDM

www.manaraa.com

136

6.5.1 Introduction

There are two different retrieval techniques that were implemented as part of

the prototype system. The first of these two options is a linear search on the keywords

that describe the objects. There is no separate index; the keywords used for the search

are stored within the data object representing the software module. This method has the

advantage of saving the space and overhead associated with maintaining a separate

index, but has the disadvantage in th a t it is costly in terms of CPU time to extract the

keyword values from the software objects and then to conduct a linear search on these

values.

The second retrieval option in the prototype CASE system is based on the

multilist architecture for database indices. There are several reasons for this. One is

that the method works well with both of the keyword classification schema that have

been incorporated into the data model. Another reason is that the multilist indices

cooperate nicely with the user interface that has been implemented for data entry and

retrieval. Both of these options are discussed below.

6.5.2 Attribute Search

The attribute search method was implemented for use with the static

classification schedule and works by extracting the value of a particular attribute out of

each object in the database, and comparing it with the value that is desired. This is

effective because the set of keywords is known in advance, and the action is made to

operate very quickly by pre-programming the set of possible queries. For large

databases, however, the cost of extracting a given attribute from every object can be

prohibitive. In such cases it is necessary to follow a heuristic search strategy, or resort

to an indexing solution such as that used in the multilist technique.

A good heuristic search strategy for this option is to first choose for the first

search operation the keyword that is most likely to yield a minimal positive result, and

www.manaraa.com

137

then to initialize the search on the next keyword in the descriptive vector with the

result of the last search. 10 This is similar to the strategy used in commercial automated

library system s, and optimization strategies used in large database systems. This

speeds up the searching process significantly, and performs best when the first searches

restrict the search space as much as possible.

6.5.3 Multilist Index

The second of the two options implemented was for use with the variable length

list classification method. This retrieval technique m aintains a multilist index of all the

keywords and the modules having those keywords as attributes. This index is

automatically system generated and maintained, and can be regenerated on command

[Rov89].

In addition to to the multilist index for keywords, there exists a multilist index

for each attribute of the module th a t is a potential search key. The group of attribute

fields tha t are identified as possible search qualifiers and for which currently exist

multilist indices are:

1. Version

2. Keywords

3. Param eters

4. Designer

5. Interface name

6. Interface tag

7. Alternative name

8. Alternative tag

10 The search for library components is done by string comparison of the target
attribute value with the candidate attribute values. A technique of searching
that was insensitive to blanks and case was tried in order to increase hit
probability, but implementation-specific technical problems were encountered due
to the fact that ROSE indices are case sensitive.

www.manaraa.com

138

9. Performance attributes

There are also indices for the various data types and variables in the design.

The cost in CPU time to m aintain these indices is neglible during the design

process, since individual modifications can be made cheaply. The cost in term s of

memory, however, is much greater, as there is a requirement to store the multilists in

the main memory workspace, and there is no restriction on the size of the indices nor

the number of indices tha t m ay ultimately exist. However, a t search time the database

can access the multilist containing the indices of candidate components in one fast

search operation.

The search strategy for the multilist option is to retrieve the multilists for all

keywords in the descriptive vector and evaluate them in parallel. The lists are combined

via a series of join operations, with the result (if any) giving the addresses of candidate

components. While the join operation is expensive for large multilists, in practice, this is

moderated because as the join operations execute, the length of the lists of candidate

components shrinks rapidly.

Each of the two above options has corresponding advantages and disadvantages.

The first method is much more flexible in terms of allowing the user to control the

search on specific attributes; the second method takes more of a "shotgun" approach in

this regard. The first method avoids the overhead associated with a potentially

enourmous number of multilist indices; the second avoids the overhead associated with

extracting the descriptive vectors from the design data and conducting a relatively siow

linear search on the result. The choice of a final implementation technique depends

ultimately on whether the major concern is one of space, in which case option 1 is

prefered, or is one of time, in which case option 2 is preferred.

www.manaraa.com

139

It should also be noted that a combination of these two techniques m ay prove to

be the optimal solution. Such a technique would provide multilist indices for the static

classification schedule. This option would restrict the number of indices from having no

upper bound to a total of nine, and be indexing each attribute would save the cost of

extracting attribute values from the database for every query.

www.manaraa.com

7. ORGANIZATION OF THE SOFTWARE ARCHIVE

7.1 Introduction

The physical organization of software libraries determines not only the efficiency

of the CASE system but often also has a direct effect on the user’s view of the software

development environment. The physical organization of the library is, however, much

less discussed in the current literature than other reusability issues such as

classification and retrievability. This is for two basic reasons. First, most research tends

to concentrate on matching the high level description of the needed target to the

available components. After this most difficult task is accomplished, the actual, physical

retrieval of the target component is considered relatively straightforward. Second, the

organization of a perm anent archive is a consideration tha t is often not faced until late

in the process of researching other reusability issues. Most of the current research and

publications, therefore, have not progressed to the stage where library organization has

had to be addressed. Nonetheless, careful attention needs to be directed to software

archive organization so tha t the reusable library can properly supplement the design

process.

In VLSI CAD, once a part is designed and tested it can be "plugged" into any

circuit and used as needed. The same should be true for software; programs used in

different applications should be truly identical. Obviously, this is the ideal case. The

goal of a CASE system dedicated to reuse should be to have application programs

consist solely of a sequence of references to the software library. The organization of

such a library should reflect tha t goal.

The issue of software archive organization is the topic of this chapter. First,

several candidate library organizations from the literature are discussed. Next, required

operations on the library based on the library organization and the design process are

presented. The chapter concludes with an analysis of the library organization

140

www.manaraa.com

141

incorporated in the current CASE prototype.

7.2 Organization of Software Libraries

7.2.1 Application-Oriented Organization

Application-oriented libraries are those archives that contain routines dedicated

to one type of problem, or alternately, group the routines in the library based on the

type of function they perform.

There are many examples of libraries dedicated to a special class of problems.

Based on the belief that user interface routines are the most "reusable" of the

components in their applications, [And88] has a dedicated library of these components.

Their argument is that by maintaining a consistent "look and feel" to their products by

means of similar interfaces and screen organizations, their products are more usable

and easily learned by their customers.

Another approach to application-oriented libraries is given in [Nei84]. Each

application is thoroughly analyzed by experts in th a t field, and reusable routines are

written in a domain-specific language. Programs in th a t area of application can then be

assembled from these routines by writing a problem statem ent in the domain language.

However, only about 10 or 12 fully usable application domains have been built because

domain analysis and design is very hard [Nei84]. This technique also has the

disadvantage that routines in one domain area cannot be applied in another domain

area. This method, due to the specific nature of the domain analysis process, does not

apply to this research.

Examples of program libraries organized by the function of the routines are

likewise numerous. Subroutine libraries, such as for FORTRAN [DeB85], or PASCAL

[Rug86], are organized in such a manner. Trigometric functions, date/time functions,

sorting, and searching routines are all grouped by type. This organization is suitable for

www.manaraa.com

142

these collections of basic routines for several reasons. First, there are typically a limited

number of such functions, and each is small and well-enough defined so as to be

identified by name. Second, the retrieval mechanism for such libraries is often a table of

contents in a software catalog or user’s manual, where grouping related items into

chapters is a well-known concept to users. However, for larger libraries, such an index

is impractical.

By encouraging the use of the programming language Ada, the Defense

D epartm ent of the United States has also sparked a lot of research in how to best take

advantage of the software reusability features tha t are part of the language

[Con87,Gag87,Onu87]. The Ada Software Repository has been created on the Defense

Data computer Network as a central library for reusable Ada components. The

Repository is organized by dividing it into several subdirectories which represent topic

areas. Some of the topics are educational information, software development, graphics,

and communication message handling. Within the general topic areas, however, little is

done to further classify the Ada components in the library. This is primarily due to a

lack of classification schedule; taxonomies for that purpose are currently under

consideration, with the most likely candidates based on a keyword-style schema

[Con87].

7.2.2 Organization Based on Retrieval Method

A number of library organizations are dictated by the method of retrieval

employed by the supporting CASE system. Not all retrieval methods, however, are

specific as to where the boundary between the physical organization of the library and

the index to the library is located.

For example, in the category theory work done by [Lit84], he suggests that the

library of reusable components should be structured to reflect the dependence among the

associated theory morphisms. He also suggests that the theory morphisms should serve

www.manaraa.com

143

as the criteria for selection of components from the library, and that a candidate

organization for these morphisms is an acyclic graph. Such a graph could be stored in a

relational database, but he does not specify whether the actual design information, or

just the name of a operating system file where the information can be found, is to be

stored in the database.

Likewise, [Iso87] suggests storing the requirements/design schema of his system

in a network organization. He does not say whether the design data or the actual index

should be placed in such a network, nor whether the network should be managed in

main memory by a database or in secondary storage by the operating system. In light

of this, the remainder of this chapter will assume that the term software archive refers

to the physical organization of the design data on disk, and not the indices to this

information.

The retrieval method and archive structure are also both influenced by the type

of internal organization used in the data files. It is possible to alleviate all questions of

archive organization by simply storing all of the archive in one file. There exist

tradeoffs, however, as to the granularity of the file structure and the capacity of the file

server and the ability of the operating system to manage the files. A common approach

is to store one design object per file; all the design information contained in the file is

used when the file is initially read by the database or CASE system [Gog84, Har86]. In

the context of this chapter, the basic unit in the archive is the operating system file,

and the information contained in a file corresponds to the design information for one

software module.

7.2.3 Public Archives and Private Workspaces

Presumably, a lot of programs in the software archive can be reused in different

applications, sometimes after changing only a few parameters. If the archive is

organized on an application basis, the search for available components in other parts of

www.manaraa.com

144

the archive has a conceptual barrier, even if the actual search for them is physically

possible. For this reason it is desirable to remove this barrier and allow all available

routines to mingle, thereby giving them all an equal opportunity to become candidates

during a search for reusable code.

An additional requirement, however, is to m aintain the integrity of the

information in the archive. During the extended, conversational transactions typical in a

design environment, partially modified information in the public archive could corrupt

other users and routines dependent on those partially completed components. One

solution is to separate the library into public and private workspaces, and place certain

constraints on the information in the public workspace [Rov88].

In such an organization, the public archive serves as an repository of approved

routines, and are read-accesible to client users. However, routines cannot be added to

this archive unless they are fully tested and approved by the library administrator or

project manager. The private library, on the other hand, is a local workspace area

where the individual designer keeps his current project information and partially

completed code. Access to the private workspace is limited to the owner of the

workspace; however, if access rights are granted to others it is with the understanding

that the routines within the workspace m ay not meet the standards required in the

archive.

A further addition to this organization is a third type of work area, and is

supported by [Kat86]. Rather than specifically grant access to routines in the private

workspace to designers requesting such access, a semi-private workspace is created.

The contents of this workspace is read-accessible by members of the group working with

the owner of that workspace. This organization, while adding some complexity to the

archiving process of the CASE system, has the advantage tha t it provides an explicit

location for common code to be shared in a distributed environment while further

www.manaraa.com

145

modifications to other versions of the code are being made.

The separation of software libraries into public, private, and possibly

semi-private workspaces has an added advantage in th a t the organization is

immediately transferable to a distributed database and design network. Since many

CAD system s operate on private workstations that are networked to a central

computer, all of the personnel working on a large project can easily port and maintain

there private workspaces on their personal machines, leaving the public archive on the

central computer for all to access. Given tha t this is a common situation in CAD and

CASE environments, it is a desirable feature in software library organization.

7.3 Operations on the Software Archive

The intent of the software archive is, of course, to provide a common repository

of approved routines for general use. As such, the archive m ust provide read access to

those approved for its use. However, in addition to simply adding new routines to the

archive, there m ust exist a set of operations based on the semantics or constraints that

the library administrator wishes to enforce in the archive.

The first such constraint is on the type of routines tha t are allowed in the

library. A realistic constraint in this case is only to allow approved and tested routines

to be archived. Therefore, before a routine may undergo a write to the library, it must

pass a formal testing, inspection, documentation, and approval process. Such a process

may be p a rt of the software engineering methodology employed a t the site or made a

function of the database.

Another constraint might be on whether or not to delete past versions of an

object. Considerations are the preservation of disk space versus keeping past releases of

code for maintenance, documentation, or legal reasons. While methods of economically

storing versions, such as the "delta" method of the UNIX SCCS [SUN86] are viable

options, the issue of deleting old versions m ust be addressed.

www.manaraa.com

146

Should deletion be allowed, further constraints m ust be considered. Deletion

should not be allowed for components tha t have dependencies that may propogate

throughout the library. For example, if Routine A is used by another Routine B, this

dependency should be removed before Routine A may be deleted. The maintenance of

these constraints is the responsibility of the library administrator.

7.4 Organization of Implementation Archive

The software archive in the prototype CASE system is organized by the type of

objects used in the IDM model. I t is further divided into public and private libraries in

order to fully support conversational transactions, distibuted design environments, and

database integrity as discussed above.

The software archive is a public directory consisting of four sub-directories; a

directory for calls, one for interfaces, one for alternatives, and one for data. The

separate directory for data exists for efficiency of queries about the use of variables and

parameters. There is also a local workspace in the user’s directory that contains a

directory for each design currently under development. Each of these local design

directories is divided, like the public archive, into directories for each object in the IDM.

This allows the designer to freely develop his designs without concern for side effects

caused by changes to the archive.

Operations on the public library are limited. Because it is desirable to retain old

code for documentation purposes, deletion of objects is restricted. In keeping with the

semantic constraint that all components in the public archive m ust be validated and

tested, write access is restricted to approved objects. Operations on the private

workspace, however, are quite liberal. By using "hooks" from ROSE to the VMS

operating system, entire directories and subdirectories representing designs and

subdesigns are created, updated, and destroyed a t the designer’s option.

www.manaraa.com

147

When the designer has completed the work on a design or sub-design in his local

workspace, and the work has been tested and approved, the work is archived in the

public library. In order to limit side effects of any actions to other modules,

modifications to the archive are limited. In term s of interfaces, the names of new

alternative implementations may be added. In term s of alternatives, entire new

alternative implementations m ay be specified. Calls are always unique and are added or

updated as necessary in the archive. The only exception to these rules is that the

version of an alternative that is to be considered "current" may be redesignated.

In keeping with the operation of the ROSE database system, each design object

is stored as an operating system file. This is practical and efficient because the size of

the data objects has been carefully designed to correspond to the size of an operating

system file. The indices for the design objects in the database become the names of the

operating system files where they are stored. Interfaces are accessed by name,

alternatives are accessed by the two-tuple (interface name, alternative name). Calls and

data objects are accessed by a system generated surrogate identifier. Finally, while the

operating system performs the actual manipulation of the disk files, all database

activities are performed by ROSE, thereby m aintaining the speed of the CASE system.

In a commercial implementation of this system, it is anticipated that the public

archive will be located on a central computer th a t hosts several workstations or design

terminals. Each of the private workspaces will be located either in private account

directories or on the private workstations. Supporting distributed design environments is

a significant feature of this library organization.

When the program design is complete, the modules that comprise the design are

added to the database as individual design objects. Once entered into the database, each

module becomes a perm anent retrievable resource. Executing a program consists of

making a reference to the appropriate component. That component, in turn, calls the

www.manaraa.com

148

required subcomponents. This organization is close to realizing the goal of having

programs consist only as a sequence of references to the software archive.

www.manaraa.com

8. IMPLEMENTATION OF THE IDM

8.1 Introduction

In order to validate the ideas set forth in this thesis a prototype CASE system

has been developed. This prototype CASE system is based on the IDM and is serving

an invaluable role by identifying and clarifying m any important issues about design

data management and software reuse.

The prototype is implemented on a VAXstation in the Center for Interactive

Graphics (CICG), and runs the VMS operating system with the UIS graphics package.

The CASE system makes heavy use of the graphics and multi-processing capabilities of

the workstation through the ROSE User Interface to UIS (RUF), with almost all input

asynchronously driven (AST) by a mouse.

The prototype CASE system includes graphical design editors for displaying

program flow of control and program declarations. The library search functions for the

software archive are also implemented. In addition, a great many user interface issues

were encountered and addressed; a full discussion of these is found in an appendix.

8.2 About the System

The prototype system divides the workstation screen into several regions which

are consistently used for the same set of functions. These regions are depicted in Figure

8.1 and are described below.

1. This region is for the main menu bar. This bar is always present on the screen

and provides access (via pull-down menus) to the most general functions provided

by the CASE System. The first two of these functions are access to the design

library and the local workspace of the designer. Next are debugging and toolkit

development operators for use of the ROSE database system in the interactive

mode. There are also a full set of predefined queries about the system. Finally,

149

www.manaraa.com

150

Figure 8.1. Screen Organization of the CASE Tool

there is a standard set of menus for managing the editing windows, with operators

for resizing and moving windows, and operators for panning and zooming within

the windows. Special variants of the some of these are also provided, such as

centering on an object and a pan-to-home function.

2. This region contains the program dynamic structure (PDS) editor. It provides the

ability to describe the flow o f program control in an enhanced type of structure

diagram as originaly proposed by [Mye78] and [You 7 5]. The enhancements allow

for the pseudocode constructs of sequence, selection, and iteration as explained in

[Pou88b] and in chapter 4. This is the primary editor for interactive design in the

prototype.

3. This is a function "palette" providing the operations for the PDS editor.

4. This region contains an IPO-style chart. A full discussion of this chart is given in

the appendix; in short, it allows the user to view the attributes of a module "on

one piece of paper."

5. This is a dialogue box. It is used to output messages and prompts to the user.

6. This is the Program Static Structure (PSS) editor. This provides a top-down

depiction in tree form of how the modules in the program are declared. For the

www.manaraa.com

151

purpose of this editor, a module is considered to be an interface and the alternative

for that interface that is being considered for use in the current design. The intent

is to show and enforce scope constraints in the design. Operations in this window

are provided by a pull-down menu.

8.3 A Sample Design Session

8.3.1 Introduction

Here we see how the program designer uses the CASE system to locate existing

code to perform a required sort of an integer array . This section seeks to illustrate how

the IDM and the software library support the interactive design process by showing

how they work together in the CASE system. To do this, a brief overview of the process

is first given. This is followed by a more detailed walk-through of a short design

session.

8.3.2 Overview of the Design Process

A detailed version of the design process is given in the following section; this

synopsis is only an introduction to the philosophy behind IDM and software reuse.

When the program designer encounters a need for some service in a program,

he meets that need by calling a subroutine or function. Using the terminology of the

IDM, he creates an instance of a call. This call represents an abstract request for

service. In further defining this call, the supporting CASE system provides tools that

help locate pre-defined interfaces existing in a library of software components that may

meet the software requirement. The tools in the CASE system also help the designer

locate alternative implementations for specific interfaces. The designer has the option of

whether to actually use the library components in his application or to design his own.

If he chooses to use the library component, he is said to bind that component to the call.

He may also make new interface and alternative objects by copying the library routines

www.manaraa.com

152

and then modifying the new objects in order to customize them for his own application.

In any case, the call remains a non-binding request for service independent of the

actions the designer has made.

8.4 The D esign Session

In this sample design session, the designer chooses to s ta r t the design process

by making all of the tools visible and accessible. (Since in this example we are only

seeking one component, none of these tools are strictly necessary, and all work could be

done by simply browsing the library. However, this section also seeks to show how the

tools in the CASE system work together throughout program development.) At this

point the workstation screen appears as in Figure 8.2.

The designer starts by adding a call icon to the PDS editor by clicking on the

Add Call icon in the Dynamic Editing palette. By doing this ail he has done is stated

tha t he has some undefined software requirement. The PDS editor now draws the

undefined call icon on the screen, as shown in Figure 8.3.

In order to define the call and simultaneously search for existing components that

meet the need of the call, the designer invokes Edit Call . The "Search/Create

Calls/Interfaces" text entry box is now displayed and activated. This box is shown in

Figure 8.4. Since m any of the concepts critical to the IDM are implemented as functions

from this box, it is worth explaining the m any options available a t this time.

The reason why this box is so critical, and the title of the box is so long, is that

all of the library search functions, the copying functions, and the creation of interfaces,

are all done from here. This box also launches the designer into searches for alternative

implementations of an interface, as will be seen below.

The evolution of a software requirem ent and the reuse of software components

is the philosophy of IDM and is the underlying motivation while working in this box. As

the designer defines his call, he also searches for interfaces tha t meet or partially meet

www.manaraa.com

153

9 t t «D o t to n *

O otot

M l to v n o t l

O ato i
on

l u o a r o f * r o l* n o
M f f o r * * « e *I n t * r

(O n) C o l l

u n * l ! n d Dot*
Idwt:

BVNOMIC e o n INC OPTION*!

IDS c o m * * * • a c o l l t o t b * d * * i * n .
:o o r COLL: O dd* o n * « o a l l t o t b * * * « l « n . b u t
p r o * lo a d e d « l t » I n f o r m a t i o n f e w a n o a l o t l n * e o l l .

IBIT c o m C n t o r a t b * e o l l e d i t o r f o r o e o l l .
B IlC T t CALL: O— v a a o e o l l f r o m t b o d o a t f n .
IN T O i o i l o v * f o r t b * * * o r e h o r e r a o t i o n o f o l t o m o t l v * *
f t * . * ; C r o o t o a o n * v v a r a l o n f o r t b * O l t o m o t l v * .

* i Add* o «d*Xk(L o o * (I t e r a t i o n) t o t b * d * o l* n .
0 : Odd* a n I f o to t o m o n t < o * l* e t lo n > t o t b * d o o l « n .

*)V fi o d j u o t o t b * p o s i t i o n o f a n l e a n a n t h * * e r * * n .
(UN) c o m (Un) C * n n * o to a n to o n t o t t o o o l n t o f e o l l .
lOOt D ta o lo y a c o n t e n t * o f o n t o o n o n t h * IOO o h o r t .
JN-OlNOi U n > o o o o e ta t* o o n o l t o m o t l v * o r t n t o r f a e * w i t h

a e o l l .
K C O fP O ils l o v e r # l o v o l o f a b o t r a e t l o n .
d tT M C T s O o la o o l * « a l o f a b s t r a c t i o n .
(OOObt ■ * f P o o n « a t h * a e r * * n .

Figure 8.2. The Development Tools in the CASE Prototype

the requirements he is defining. He does this by comparing the entries he makes for the

call, which are viewed as constraints, against the corresponding entries in the library of

module interfaces, which are considered definitions of available components. The

designer s tarts (or restarts) his search by selecting the Search icon. The single letter

icon S next to each attribute box invokes a search on all interfaces over tha t attribute.

The results of this search are used to initialize the next search, or if the result is zero,

the last search result (LSR) is automatically retained. The designer may also backup by

manually selecting L ast R esult. He may scan through the interfaces found in the last

www.manaraa.com

154

S t r u c t u r e

Call?
\ /

\ r d 1 (Copy

(“*') (D ela te^

| l n t e r | |V e r . *tj

1 ^
While

o
I f

Move
(Un) C a ll

IPO Un-81nd

Decomooee A b s tra c t

HELP REDRAW)

Figure 8.3. An Undefined Call

search by using the Brow se LSR option; interfaces will appear on the IPO chart. Of

course, if at any time the designer needs an explanation of these operations, there is

assistance provided by Help, and if he needs suggestions for search keys for any

particular attribute he may select the single letter H next to th a t attribute.

To illustrate the search facility, we pick up the design after several entries have

been made. The designer names the call "Sort an integer array" with "I Sort?" as

it’s short name, or tag. He also has filled some other administrative information. He has

selected Search to initialize the search for interfaces th a t might sort an integer array.

Right now the search space contains all the interfaces in the software library. He then

makes the entry "Sort" in the Function box for the call and clicks S as shown in Figure

8.5. The dialogue box advises him:

There were 4 interfaces with that function.

Encouraged, he requests help on interface inputs and clicks the H next to the

"Input" box. The dialogue box advises him that the four interfaces found in the last

www.manaraa.com

155

S e a r c h / C d i t C a l l ' s / h i t CM ft

E
Name;

. ‘ d - T

D esigner:

0 (h] lag : £

0 [h] O a te sf
][9
117

M

Comment: |_

Keywords
Function

Inou t: Q
Environ: I-

0 [h] Medium: Q

0 0 OutDut: Q
Q 0 Language:^

s
a
m

Show Hamas

C o o v

Make Xntar

Search L ast R esu lt

Param eters f i l te rn a t iv e s

Done Halo

Browse LSR

IPO C a ll

Bind

Q uit

Figure 8.4. Search/Create Calls/Interfaces

search have the inputs:

Real Array

Integer Array

Linked List

Matrix

Since "Integer Array" most closely matches his need, the designer makes tha t entry in

the "Input" box, and clicks S. The system advises him that there is only one interface

in the library that has tha t input (and is a sort function). He displays this interface on

the IPO chart by clicking B row se LSR, as is shown in Figure 8.6. Note tha t because

no alternative has yet been specified, this part of the IPO chart is left blank. The

designer may also view the param eters and names of existing alternatives for the

www.manaraa.com

156

S e a r c h / C d i t C< i lh / I i t t n f . i t

Nana: l 8 o r t . w i . i n

O aalinar: | j « » r « y s. P o u l i n

Li’.- . ‘.'I'lLi 11 :>n

0 0 T a « : | i . 3 o r t T | [j

0 0 Dataifiooetaa

Conmantl l l n « « 0 t o t o r t w> 1 . . 1 0 0 l n t « « « r a r r a y From l o n o o t t o h l t h o o t .

Keywords
Function i | s o r t j

Incut: |
Environ: I

] [3 0 Medium: Q

] i 0 Output: £
] 0 0 Lan«ua*e:Q

El
El
El

-

E p n s f l I
Search L ast R esult | Browse LSR

| Show Hamaa | IPO C all

1 CODV P aram eters A lte rn a tiv e s I Bind

1 Make In te r Done Helo Q uit

Figure 8.5. Searching for a Sort Function

interface by clicking on the appropriate icons on the IPO chart. The results are listed in

the dialogue box.

At this point, the designer has several options. He may elect to copy the

interface information (Copy)for the integer array sort into the call he is editing. If he

chooses to do this he finishes defining the call, by giving the call the attributes of the

interface that was found. This would also allow him to edit the call information and

param eters any way he likes, and then later make a new, custom interface for his

application (using Make Int). Furthermore, he could bind the interface to the call using

Bind, thereby telling the system that all future references to this call should

automatically reference this interface. This action would be reflected in the PDS editor

by replacing the call icon with an interface icon, as shown in Figure 8.7. The key point

www.manaraa.com

157

II
I B B B I n te g e r _ A r r « y _ S o r t
" In t Sort
Dee: Je ffre y S. Poulin Date: 21Sept86
K eyw orde-
F; S ort I: In teger Array 0 : In teger Array
M: B uffer E:l<t/S L :P l/I
Thia rou tine ao rta an array of in tegera from low ■

1 Parameters j lA ltem ativeal 1

Dee:
Declared by:
Nintoer o f Veralone:
P e r fo r m a n c e -
T: S:

Date: I

| Subprogram | Varlablea I I

bJho:
Approved:
What:
Why:

Date:
Date:

| Code I

Figure 8.6. IPO C hart for Integer Array Sort Interface

is the designer m ay define as little or as much as he likes, knowing tha t the call will

remember the definitions and also allow any future modifications should he change his

mind. In our case the designer elects to investigate alternatives for this interface and

invokes A lterna tives, resulting in the tool shown in Figure 8.8.

Since this box looks and operates in a manner similar to the box for calls and

interfaces, a detailed explanation here is spared. The designer is satisfied with the

"Quick Sort Method" alternative of the "Integer Array Sort," and now scans the

versions of this alternative using V ersions. Here he has the option of viewing the

history and pseudocode of each version and selecting one to be a current version. The

tool for these actions is shown in Figure 8.9. Note that this step is also not necessary,

www.manaraa.com

158

D i | n a m i c S t r u c t u r e

^Add ^ ^Copy j

^Edlt ^ ^Delete^

jjln ta r jj jv a r . »j

UMle

Decompose A b s trac t

REDRAWHELP

Figure 8.7. The Interface Icon for the Integer Array Sort

and if skipped will result in the version now identified as the current version to be used

in the application. Also note tha t in the future a large variety of documentation

schemas will be provided to document the actions of the version.

To complete this example, the designer has clicked Bind, IPO Call, and has

exited back to the PDS editor. This combination of actions is reflected in Figures 8.10

and 8.11. Note tha t once the interface and alternative for this module have been added

to the design, the Program Static Structure editor automatically updates itself, as

shown in Figure 8.12.

What the designer has successfully done is to interactively develop a

requirement for a software service into a completely defined piece of code using existing

components from a reusable software library. The IDM is central to his ability to do

this. It allows him the ability to evolve an idea without having to be exact, secure with

the knowledge that he can define as little or as much as he likes, with the ability to

www.manaraa.com

159

Hamai
Dealgner.'

In tegar_A rray_S ort
I 0 0 Tagi £
I fsl 0 D ata ;£ □G

Comment: |_____
Performance
Timei I

version to uae!

0 0

H 0

Spacei L
Comoonent:[_

0
0

I S f f l f l i l
Search Last R esu lt Browse LSR 1

Snow names V ersions
1

IPO C all

Make s i t E d it f lit Uodate C all Bind

Done E dit | □one F5R | He lo

Figure 8.8. Search/Create Alternatives

Q u i c k _ 5 o r t _ M e t h o d

Text

Entity-Rel DoneHelp

Data Flow

Laat

Data S t ruc t

NextMake Current

Control Blk

in nr. I rii'i i~l [~i ~t~ i .~ii~i=. :

LXl S c a n V e r r v i o n s

Figure 8.9. Scan Versions

change the requirements a t any time without any penalty. The prototype

implementation of this philosophy is demonstrating that the IDM and software library

www.manaraa.com

160

I 11*11 C h a r t

I n t a g e r _ A r r a y _ S o r t
" In t Sort "
Dm : J e ff re y 3. Poulin
K eyw ords-
F: S ort I: In teger Array 0: Integer Array
M: Buffer E: l*h/S L:PL/I
This rou tine so r ts an a rra y of In tegers From low

Datei 21SeptS0

Pararweters jA ltem atlveel

Quick_Sort_Msthod
"Quick
Dee: Je ff re y Poulin Date! 26Septfl6
Declared by: Some_Kind_Of_Sort_Package_Array_
Number o f Versions: 1
P e r fo r m a n c a -
T:Very Fast S: P re tty Much C: P rin t Msgr
This s o r ts an in teger a rray using the quicksort a:

I Subprograms I V ariables |

Uho: Je ffre y S. Poulin Date: 120ct88
Approved: M. Hardvick Date: ISOctSfl
Uhat: This f i r s t version is the r e s u lt of the prog'
Uhy: Completed f i r s t design review.

Code

Figure 8.10. IPO Chart of the Integer Array Sort Module

provide a viable method for supporting reuse and software design in a CASE system.

www.manaraa.com

161

IJijtuimic C<litDijiiaiiiic S h i n f n n . *

Quick
In t S o rt

While

Move
(Un) C a ll

Un-Blnd

Decompose

REDRAWHELP

Figure 8.11. Resultant PDS Diagram

S t a t i c S t r u c t u r e

Quick
I n t S o rt

IPO I
D eclare
U n-D eclare
Decompose
A b s tra c t
Hide Module
Parent?
Move Module
Redraw
Help
D e is ts Menu

Figure 8.12. Resultant PSS Diagram

www.manaraa.com

9. EVALUATION OF THE IDM

9.1 The IDM as a Partial Solution to Reusability in CASE

The IDM addresses several design object modeling problems that current

conventional and CAD data models fail to address. The first of these is the ability to

"see" inside implementations of design objects; in traditional object-oriented

programming this is not permitted. However, in order for a designer to use a module

with confidence, some of this information must be accessible. This is an important

philosophical addition to an object-oriented world.

By dividing the molecular interface into a requirements and a definition portion,

the IDM permits a level of flexibility during the design process tha t is not possible with

the molecular model. Since molecular interfaces define modules, they cannot be

modified, thereby unnecessarily tying the designer’s hands as he seeks to develop his

program. However, the IDM is intended for just this type of interactive, dynamic

approach, and allows requirement specifications to grow as the project grows.

Unlike other CAD data models, the IDM provides support for all stages of the

software engineering lifecycle. This is possible a t high levels of design and during

product maintenance because the IDM inherently stores requirement specifications as

part of the model. At the middle stages of design, the three IDM constructs reflect

software modules and how they interact, both from a control flow and a declaration

viewpoint. At the code level, the language-independent pseudocode representation

reflects the source code constructs tha t are required in any structured programming

language.

Finally, no solution as simple as a semantic model for design data will solve all

of the problems of software engineering and CASE. The IDM seeks only to make a

small step towards more efficient software development and the production of a higher

quality software product. No panacea or greater claim is made. However, it is strongly

162

www.manaraa.com

163

believed that in those areas of software engineering that the IDM addresses, the IDM

does an exceptional job in meeting those tasks.

Due to the lack of a numerical evaluation method for comparing software

engineering processes, this kind of evaluation of the IDM is not provided. While every

attem pt at objectivity is maintained, a mathematical approach to evaluation of this

research is not possible due to the difficulty in quantifying software engineering results

[Duf89], The same is true when comparing the IDM with current CAD data models.

For this reason, any evaluation of this type of research will contain a significant

subjective element.

An extensive review of research done in the fields of data modeling, software

engineering, and database techniques has shown that other authors are often faced with

this same lack of a quantitative evaluation method. The approach commonly taken is to

undertake a thorough discussion of the advantages and disadvantages of the new

technique. For this reason, this chapter uses this approach. First, the major issue of

semantic storage of design data is discussed. Next, the issues of design capture, data

classification, component retrieval, and software library organization are presented. In

each case, the strengths and weaknesses of the new EDM’s approaches are forwarded.

9.2 Storage of Design Data

9.2.1 Advantages

Until recently, the dominant tendency in database systems has been to work

with available techniques and to ignore data semantics, although the object-based

technologies and particularly the object-oriented technologies have attempted to close the

semantic gap beteeen data and reality. Most of the software-oriented database work has

been based on models that can be viewed as simple extensions of the relational and

entity-relationship models. The inadequacy of these models for software design support

www.manaraa.com

164

has been broadly acknowledged [Bat84, Has82, Hel87, Sid80, Web88].

The IDM takes the object-oriented approach to data modeling, adding a set of

semantic rules that mirror the software product tha t is being created. Unlike other data

models, the IDM grants the designer a great amount of flexibility during the design

process by providing a place for the evolution of product requirements and constraints.

These requirements and constraints are stored as p a rt of the IDM, thereby providing a

record of the software development process for documentation purposes as well as

providing a means through which to retrieve candidate components for reuse.

The storage model has good performance expectations for large-scale systems.

Each object in the IDM is relatively small, allowing it to be manipulated by the

database system and the operating system with a mimimum of operations and disk

accesses. This is in keeping with the ROSE philosophy in the performance optimizations

of an object-oriented database system [Har87a]. Furthermore, the boundary of each

object in the IDM is well-defined. Retrieval of one design object does not require the

automatic retrieval of all objects referenced by it; this action is postponed until

specifically required. This prevents a proliferation of I/O requests for relatively minor

operations.

9.2.2 Disadvantages

The primary drawback to this model centers on the semantics regarding the

modification of existing interfaces. The valid operations on the model do not include the

ability to edit an interface once it has been created. This is because changing the

definition of a module invalidates the implementations of the module, and compromises

all places where that module might be used. This is traditionally a major concern in

database systems. In the IDM, object integrity is guaranteed by preventing such an

action altogether. The process required to modify an existing interface is to copy the old

interface into a new call object, and then to edit the call as desired. At this point, the

www.manaraa.com

165

new call may be made into an interface object, or saved as a call object for even further

modification a t a later time. However, this is not so much a disadvantage as it is an

inconvenience.

The positive side of this restriction on the user’s modification of interfaces is

tha t the process explicitly requires the designer to ensure that no type conflicts are

created by his action. In fact, no type conflict can arise. Now consider the case where a

routine th a t is currently in use throughout a design requires a change to its interface.

The semantics of the IDM prevent modification of the interface because the

consequences of such a change made uniformly in so m any locations cannot be

predicted. However, design engineers are often much less concerned about immediate

integrity constraints, and may wish to do exactly this kind of universal modification. If

this is the intention of the designer, he can proceed in the following fashion: First,

construct the new interface according to the semantics of the IDM, as described in

Chapter 3. Second, retrieve all call objects in the database tha t have the old interface

bound to them. Finally, set the Bound int fields of these call objects to the new

interface name.

A variation of this situation is discussed in Appendix II, Section 15.2.1. It is

im portant to note that the prototype implementation strictly implements the valid IDM

operations as described in Chapter 3 and in Appendix II. Without entering the ROSE

database system in the interpretive mode, it is impossible to operate on a program

design other than in a semantically approved fashion. Note th a t in the situation

described in the appendix, the prototype implementation is based on a design decision

tha t is model independent. In order to circumvent the "inconvenience" tha t this

disadvantage creates, a commercial implementation of a CASE system based on this

model m ight add a replace operation to the valid operations on interfaces. Once again,

this is a design decision based on database concerns and not engineering practice.

www.manaraa.com

166

Finally, the IDM was developed with a heavy orientation towards structured

programming and the major software engineering methodologies, all of which support

structured programming. The data model is not intended for the design of parrallel

computing algorithms, concurrent computing algorithms, non-sequential imbedded

systems controllers, and object-oriented programming with methods, such as in

Smalltalk.

9.3 Capture of Design Data

9.3.1 Advantages

The method developed for data capture with the IDM is a direct reflection of the

major top-down, structured programming methodologies as well as the semantic objects

that comprise the IDM. In the Program Dynamic Structure editor, the system

incorporates a "who-calls-who" orientation in a tree-style format tha t quickly shows

control flow dependencies. In the Program Static Structure editor, the system further

shows the declaration scheme of the program, and is useful for answering questions

about scoping rules.

In addition to these kinds of information, the various IDM icon shapes and the

spatial relationships between the icons provide a very fast and effective method for

conveying the status of the program design. A quick glance a t the diagram reveals

which software requests are currently unsatisfied, and which modules are currently

undeclared. This desirable characteristic is an attribute of visually deep diagramming

methods.

The PDS and PSS diagrams not only provide a methodology for software design

that m atches the design process, but they also provide a tool tha t is flexible enough for

use throughout the software lifecycle. The abstract representation of a

request-for-service that exists in the call is suitable for the development of product

www.manaraa.com

167

requirements, whereas the pseudocode representation of the code statem ents present in

the alternative object relieve the model of any language dependence.

An additional problem with classical representation schemes is that they tend to

promote understanding and communication among the development team up to the

implementation stage of a project, but a t th a t time ail the design information is

effectively discarded. This is the result of the unfortunate consequence that there is, for

the most part, currently no way to integrate design information with the code, or to

otherwise effectively maintain, manage, or reuse it. Moreover, the fact remains tha t

many large, complex computer system s have been designed without any specific

methodology to guide the software development process [Web88].

The IDM eliminates this problem in a natural way. The model is by itself a

direct reflection of the PDS and PSS design diagrams th a t created it. The design

documentation is therefore always available. The model also has provisions for

incorporating other documentation data into the object schema, so it is possible for other

types of diagram s to be included in the database for design or documentation purposes.

Large scale systems can be visually represented in a satisfying m anner through

the abstraction and generalization mechanisms built into the diagram editors. The

abstraction of a part of a design results in the hiding of unnecessary clutter and detail,

and increases the response time of most global operations by restricting the traversal of

the diagram to unabstracted objects. Generalization of all or a portion of the diagram

reverses the abstraction operation, thereby revealing the details of a design. This

concept is further developed in the section "Economy of Scale," below.

9.3.2 Disadvantages

As with any design tool tha t is forced to use a finite space to represent large

designs, there are problems concerning the amount of information and detail th a t can be

usefully displayed at one time. While window resizing, zooming, panning, and the

www.manaraa.com

168

abstraction and generalization operations help in this regard, the PDS and PSS

diagrams do not entirely solve this problem.

There are several features th a t could be added to the PDS diagram in the

future. The most notable of these is to enhance the diagram with a visual indication of

the suitability of a call and the objects th a t are bound to it. For example, if the interface

currently bound to the call only partially satisfies the constraints of the call, this should

be expressed in the diagram. The visual indicator should also indicate, at a glance, the

level of conflict currently existing between the call and bound objects. In this way,

bound objects violating five constraints would be stressed over those violating only one

constraint.

Furthermore, the design diagrams only provide a limited bottom-up design

capability. This is because of the dichotomy the reusability problem creates with

top-down programming advocates. The top-down designers suggest that all

programming problems should be progressively subdivided until the problems become so

small that they can be easily performed by one software module. The idea of

reusability, however, is to incorporate as much existing code as possible into the design

in order to increase productivity and decrease effort. This is inherently a bottom-up

activity. The issue becomes one of deciding at w hat point the top-downers should s ta r t

making design decisions based on the availability of reusable components, and of how

much the bottom-uppers should force existing parts into a design. Although both

methods are supported by the IDM and the graphical tools, the strength of the model is

in supporting a top-down approach to programming.

Perhaps the greatest criticism of the PDS diagram is that is fails to remove the

designer from the semantic structure of the database, which is a drawback for those

unfamiliar with data modeling concepts and/or database systems. The intention is to

forward a design method based on the IDM that has a high emphasis on reuse.

www.manaraa.com

169

However, the graphical tools should be as general as possible in order to appeal to those

unaccustomed to the technique or who do not wish to learn it. This problem can be

partly addressed by integrating other design methods into the system.

9.4 Classification of Software Components

9.4.1 Advantages

While there are many classification techniques currently in use and under study

for various kinds of libraries, there is significant difficulty surrounding the classification

of objects that are as abstract as software. The m ainstream in research and the

tendency in application systems is to classify reusable software components using some

form of descriptive vector that is composed of a finite set of keywords. The length of

this vector can be fixed or of any length.

The IDM has been shown to fully support these keyword classification schema

and do so efficiently. By storing the classification criteria in the IDM objects, no

additional overhead is required in the library system beyond the m anagement of the

design objects themselves.

9.4.2 Disadvantages

The use of a keyword based schema for the classification of software has been

fully addressed in Chapter 5. The largest problem with these methods is the lack of

precision; the choice of keywords and their attributes is a subjective decision made by

the designer or librarian. Part of this problem is due to the abstract nature of the

design objects, but part of the problem is due to the manual method of selecting

keywords and their values. Incorporating an automatic or machine-assisted tool to

classify the objects might result in more precise definitions.

The most common tool for this purpose that has proven to be very effective in a

CASE system is a thesaurus or "valid word" list [Fra87, Iso87]. The lack of such a

www.manaraa.com

170

thesaurus in the EDM prototype makes it difficult for a designer to find objects that

have been classified with similar, but not compatible keywords. The lack of this tool also

increases the number of similar values that an attribute might contain, making

searches more difficult from a designer’s point of view and less efficient from a

database point of view. Some form of vocabulary control mechanism is clearly needed.

9.5 Retrieval of Software Components

9.5.1 Advantages

Matching vague and abstract requirement statem ents to those components in a

reusable software library tha t are able to fill those needs is one of the most challenging

aspects of software reuse. Any retrieval technique m ust use all of the information

available to it, such as param eter lists and module performance attributes. However, in

order to do this, the technique is dependent on the method used to store and classify the

design data. In the IDM, the product requirements and constraints are stored in the

call, where they can be modified, developed, and saved. These requirements are later

matched by a retrieval algorithm with interfaces and alternatives that have the same

values for corresponding attributes.

There have been two retrieval algorithms implemented as part of this research.

These methods involve accessing the keywords in the object classification schema and

comparing their values against those in the software requirements. The prim ary

difference between the two techniques is the use of multilist indices in one of the

methods in order to provide faster access to large data sets. These indices are external

to the model and are independent of the IDM. Both methods, however, demonstrate that

the IDM is capable of supporting an effective retrieval mechanism in a CASE system.

Furtherm ore, by creating and maintaining multilist indices for search keys, the model is

capable of supporting large-scale queries a t relational database speeds. I t is believed

www.manaraa.com

171

that this can be a tremendous asset in an industrial strength version of a CASE system

based on the IDM.

9.5.2 Disadvantages

The issue of design object retrieval is by itself a major research topic, critical to

the reuse problem. In many ways it is the most important of the reusability issues,

because in one way or another retrieval depends on all of the other issues; on how the

information is presented to the user, how the information is classified, and how it is

stored, both in the immediate database workspace and in longer term public libraries.

The retrieval techniques used with the IDM are database standards, but lack

extensive heuristics that might be found with a knowledge-based search assistant or

more "intelligent" system. The use of these advanced searching concepts could greatly

increase the response and usefulness of a CASE system. Although it is not possible to

predict performance improvements, even the incorporation of a thesaurus as discussed

above could make object retrieval significantly more efficient.

An additional shortcoming and possible enhancement to the current retrieval

algorithm would be to incorporate a partial matching mechanism for automatically

retrieving those objects that meet a subset of the call’s constraints. The retrieved objects

could then be ranked in order of their suitability. Currently, the implemented retrieval

algorithm finds only those objects that m eet all the call constraints. As above, such an

enhancement would make object retrieval a more intelligent and user-friendly process.

9.6 Organization of the Software Archive

9.6.1 Advantages

The design objects in the archive represent all of the complete and functional

software components developed to date. While these objects are related through

references known as calls, from an external viewpoint the archive is comprised of a

www.manaraa.com

172

collection of "equal opportunity" components. There is no boundary, physical or

conceptual, th a t prevents the selection of any component. This means tha t a component

tha t might have been developed for a totally unrelated application has the same chance

of being accessed as any other component while the designer is conducting a search for

reusable modules.

The IDM software library is not only divided by object type, but also into a

public archive and a private workspace. The public archive contains approved and active

design objects, while the private area contains modules under development. This division

of the software library has several advantages. First, by separating the modules under

development from those in active use, the integrity of the data in the public archive is

guaranteed. Second, this division is readily adaptable for use in a distributed design

environment. Not only is this the most common form of CASE environment, but is

particularly advantageous when developing large scale software systems where

hundreds and perhaps thousands of programmers are involved in the design and/or

maintenance of a program.

9.6.2 Disadvantages

The organization of the public and private workspaces assumes that the host

operating system has no practical upper limit on the number of files that can be

maintained in a file system directory. As designs grow, and especially as the public

archive grows, the number of files in these directories can become enourmous. The

library organization and the database depend on the operating system to manage this

potential growth.

9.6.3 Economy of Scale

One major concern in any CASE system m ust be how the system will perform

when extremely large quantities of information are being accessed and manipulated.

www.manaraa.com

173

Specifically, will the system response time unacceptably deteriorate? The organization of

the prototype library allows a heuristic that is aimed a t keeping system response times

fast.

This heuristic is to keep the contents of main memory to a bare minimum. The

strategy is to have something in memory only i f absolutely necessary. Normally, when

designing a large system, the user will only work on a small part of the actual design.

With the EDM library organization, only this small part of the design will exist in

memory; the rest remains in secondary storage until needed. The designer can save this

small part in his workspace and recall it a t will. He m ay also request that other parts

of the design be loaded, either explicitly (by name) or automatically (by navigating the

structures in the PSS and PDS editors). When a call, interface, or alternative object is

required for the first time, it is read from disk. Using this strategy, the amount of

information typically in active use will be restricted to dozens of objects rather than

thousands, with a corresponding speedup in response time. This strategy is termed the

economy of scale, and is possible through this library organization by direct access and

retrieval of the required object in the appropriate directory.

9.6.4 Levels of Abstraction

An additional feature which is possible primarily because of this library

organization centers on the desire to view the program from multiple levels of

abstraction [Rov88]. A high level of abstraction is to view a program as if it were just

an interface or a call, without considering the subroutines it uses to implement the

action. For example, in the prototype CASE system, abstracting a node in either of the

two tree diagrams has the effect of hiding the children (and grandchildren, recursively)

from view. In contrast, a low level of abstraction is to see how the module does it’s job,

in other words, who it calls and who it declares. In the CASE system, decomposing a

node in one of the tree diagrams causes the immediate children of that node to be

www.manaraa.com

174

displayed. If the information about these nodes is not in memory, it is first read from

secondary storage.

This feature has several advantages. First, and most importantly, it supports

the EDM, molecular object, and object-oriented concepts of viewing modules in a

black-box and in a white-box fashion. The second advantage is th a t it supports the

top-down structured design methodology. And finally, in keeping with the above stategy

of "economy of scale," it keeps the CASE system performing a t optimal efficiency. By

organizing the library by object type, and storing the objects by prim ary key index,

these object can remain in the archive on secondary storage until needed, and yet still

be located at main memory speeds.

www.manaraa.com

10. RELATED WORK

10.1 Design Data Management in CASE Systems

There has been a lot of interest in database system support for the software

development life-cycle [Blu87, Bro87, Cam83, Day83, M at87, MHS86, 01u83, Onu87].

Most of the articles addressing this issue give extensive consideration to the

requirements for a CASE system, but do not explore detailed solutions to these

requirements [Ber87, Nes86, Rom87, Sid80, Yau87]. The following paragraphs provide

a sum m ary of recent work in this area.

Numerous commercial system s are currently available through CASE vendors

[Dig88, Bal85]. These products can be grouped into four categories, depending on the

amount of support they provide to the software engineering process. The first group

allows the designer to design a program using one or several of the major diagramming

techniques for design. They incorporate some semantic checking of the diagrams tha t

have been created, but are little more than customized drawing routines [Rou83]. The

second, smaller, group advertises some level of semantic checking and data dictionary

support of the diagrams tha t have been created. This group typically uses a database to

manage the design data, and this database is almost always relational [Cad87, G1L86,

Gut82, EDE87, Was87]. The third group, which comprises only a few products, adds to

the functionality of the second group by producing pseudocode skeletons from the design

diagrams, or some other form of output that may be useful to later stages in the design

process. The final group is made up of highly specialized products, such as those tha t

automatically generate "structured COBOL" programs from unstructured ones, and

therefore are outside the scope of this work.

Many of the applications related to software development opt to use an abstract

syntax tree representation of the program to manage the design data [Alb84, ReS85].

There are several advantages to this. First, there is nearly a one-to-one mapping

175

www.manaraa.com

176

between this representation and code, so automatic code generation is generally possible.

Second, incremental parsing of the program design is possible after nearly every syntax

change. However, databases are not employed to support abstract syntax trees, as it is

considered much more efficient to use linked-lists of records to simulate the tree

[Pow83], or alternately, to use the list management facilities in LISP [GE87]. However,

because the data structure so closely models the Backus-Naur description of the

programming language, this class of systems is generally oriented a t and limited to

low-level design and program development.

10.2 Existing Systems for CASE

10.2.1 Introduction

Not only has there been an intense research effort in CASE, but a strong

commercial interest as well. From a business perspective, a company that is paying a

program mer a fairly substantial salary every year is making a sound investment in any

product th a t has the potential to multiply his productivity. For this reason there are

numerous CASE packages available on the market and described in technical literature.

Journals such as IEEE Software commonly carry advertisements for CASE systems

th a t specialize in areas ranging from source code version m anagement to graphical

design. In place of a survey of the state of the a rt in this area, I describe several

representative systems below.

10.2.2 Software Through Pictures

Interactive Development Environments (IDE) is a company founded by a pioneer

of this field, Anthony Wasserman. IDE m arkets the Software through Pictures system,

which supplies editors for data flow, program structure, data structure, entity

relationship and transition (finite state machine) diagrams. The system runs on several

major workstations and uses a relational database for data management. It is

www.manaraa.com

177

advertised as being flexible and easily extendible for custom situations, as a result of

it’s "open architecture" design. An example of an IDE editing window is shown in

Figure 10.1.

Although the IDE system provides numerous graphical editing capabilities, any

one p a rt of the target program can be designed using only one of the views. Several

schemes may complement each other, however, such as a text description of a module

designed with the data flow editor. Each part of the overall program design is stored in

it’s own database relation, and consistency checks with the rest of the program are done

a t the express order of the designer. IDE is a "high level" tool aimed more a t

programming in the large and does not provide a means to work directly with source

code [IDE 8 7].

10.2.3 Pecan

The Pecan family of program development system s is the research product of

Steven Reiss a t Brown University. It is, in contrast to Software through Pictures, a low

level design and programming environment. Therefore the graphical tools provided are

more code-oriented; Pecan supports standard flow charts, Nassi-Schneiderman

diagrams, a structure chart, and a syntax tree representation. The latter is due to the

representation of the program internal to Pecan. There is no database supporting the

design. Rather, the program is stored as an abstract syntax tree. This allows for much

more syntax directed checking, as well as incremental parsing of the code. Pecan also

includes a text editor for source code and run-time facilities for visual program

debugging are provided [Reis85].

10.2.4 Interactive Ada Workstation

The Interactive Ada Workstation is under development at the GE research and

development center in Schenectady, New York, for the U.S. Department of Defense.

www.manaraa.com

178

1 N J « I

f B W W n «i*«m 9 a t e i O v i

Figure 10.1. IDE Data Flow Editor

The prim ary high level tool that the Workstation supports is the Buhr diagram, which

is a diagramming convention developed specifically for the Ada language and has the

ability to represent concurrent Ada tasks. The Workstation supports or will support

several low level design tools including a finite state machine editor, decision table

editor, tru th tables (a special case of the decision table) and Nassi-Schneiderman

diagrams. The Workstation was programmed in LISP and uses that language’s resident

list processing facilities instead of a database to manage the design data. The internal

representation of the design is, like the Pecan system, a syntax tree. The Workstation

allows the programmer to edit source text and run Ada programs. It supports

incremental compilation and can automatically generate code from diagrams such as the

finite state machine [GE87],

www.manaraa.com

179

10.3 Semantic Data Models for Design Data

10.3.1 For CAD/CAM

There is no shortage of literature on data modeling problems in general

CAD/CAM or VLSI applications. As discussed in Chapter 2, many of these applications

use the molecular object approach to model design objects [Bat84, Bat85, Buc85, Has82,

Hel87, Kat85, Sto87]. Recently, however, many of these researchers have turned their

attention to issues such as version control, choosing to remain with the molecular object

data model. [Bha87, Dit88, Kat86, Kat87, McL83].

Two novel approaches to design data modeling come from recent doctoral

dissertations. One is the Design Object Model (DOM) by [Bap86]. In the DOM, almost

every concept related to the design is encapsulated into an object along with a set of

allowable operations. Objects related to the design in DOM include interfaces,

implementations, views, components, interconnections, evolutions, schemas, instances,

copies, definitions, and for anything not included in the above list, a generic object. The

model in this proposal is conceptually much simpler than the DOM approach because it

encapsulates most of the design issues into the module object itself, thereby allowing the

designer and database to deal with the issues in a unified manner.

The second project is by Stephanie Cam m arata, and is oriented towards a

mechanical design, engineering, and manufacturing application where she works. The

data model in her thesis concentrates on storing the product definition data tha t is

generated in the initial design phases. Her model is constructed from four basic

components; intentions, instances, descriptions, and extensions. An intention corresponds

to a generic, prototype object. An instance represents a real world object, and is a copy,

or instantiation, of the intention. The description contains the values of the attributes of

the instance. The entire design is comprised of the set of all design object instances, and

is referred to as the extension. The Cammarata model differs from the model in this

www.manaraa.com

180

proposal in th a t it is heavily based on set theory and predicate logic.

10.3.2 For Software Engineering

One major research project in the area of CASE is an on-going effort a t the

University of Colorado called Cactis [Hud87, Hud88]. Cactis is designed to support the

construction of objects and type/subtype hierarchies, which are useful for managing the

complex data found in software environments. In fact, Cactis is a complex object model

that references other objects via the relationship. This relationship is a very simple

interface, consisting of only the number, type, and direction of the values in what is

essentially a param eter list. Cactis concentrates on functionally defined and derived

information, and considers the multiple references between objects as creating an object

base similar to an attributed graph. Through the use of well-known graph algorithms,

this representation allows the Cactis system to support the design environment while

retaining good performance characteristics. Unlike the model in this proposal, Cactis

allows some procedurally defined data which gives an object local behavior. Like the

interface in the molecular object model, the simplicity of the Cactis interface allows a lot

of flexibility in filling sockets in the design; however, no support for this action is

addressed. Finally, Cactis admittedly is not m eant to support real-time graphic editing

and checking efficiently.

Recent work a t Brown University has investigated object-oriented database

support for "conceptual" programming [ReS86, ReS87, Van84]. This system, called

GARDEN, is a programming rather than a design tool and utilizes a Smalltalk-style

approach for its objects.

www.manaraa.com

11. CONTRIBUTIONS TO TH E FIELD

11.1 Introduction

The field of CASE is relatively young and constantly in search of new ideas. Of

the many issues currently being investigated in CASE, several im portant ones are being

addressed here. These include not only the prim ary concern of data modeling, but the

integration of major software design techniques, a friendly and functional user interface,

and, especially, a strong reusability capability. Most of these topics are discussed in

detail as part of the evaluation of the IDM in Chapter 9.

The prim ary contribution to the field of software engineering made by this model

is the high emphasis and support it provides for the reuse of software components. By

specializing the interface to handle the two roles it assumes in the design process, and

by opening parts of the implementation of a design object to the user, the IDM model

assists designers seeking a flexible way to mate requirements with availability. With

the pending crisis facing the supply and demand for software [Weg84], CASE systems

tha t fotyow-tbe CAD/CAM approach of assembling new products from existing

components will be greatly needed.

This chapter analyzes the contributions of the IDM to the field of CASE from

the perspective of the definition of a data model for CASE reusability

RDM = (CCDM, G, S ^ , R, P big)

introduced in Section 2.6. The three elements of the generic data model GDM are

extensively discussed in the Appendices; Appendix I details the data model structure S,

Appendix II details the allowable operations O as well as the constraints C on the data

structure and the operations. The remaining elements of the RDM represent the special

attributes of CAD, CASE and software reuse. They are comprised of fifteen

requirements, also introduced in Section 2.6, and are summarized in the table below. In

this table, the IDM is rated on a three-point scale according to the level of support it

181

www.manaraa.com

182

gives to each requirement; either weak, average, or strong. Also included in the table

are examples of other data models that do particularly well, or particularly poorly, in

meeting the requirement. A justification for these classifications is given as part of the

evaluation of the IDM in the sections tha t follow.

The analysis of each reusability requirement identifies how the IDM contributes

to CAD, CASE, and software engineering by addressing that issue. Since most of the

contributions that the IDM makes to the field of software engineering apply equally well

to the field of CAD/CAM, these contributions are included in the discussion where

appropriate.

www.manaraa.com

183

IDM E va luation Sum m ary

Criteria for CASE / Reusability IDM Other Models
that do Well

Other Models
that do Poorly

W A s

1. Provides Conceptual View of
Design D ata

X Molecular Functional

2. Provides Conceptual View of
Engineering Process

X Complex Objects

3. Supports Multiple
Implementations and Versions

X Complex Objects Relational

4. Efficiently Models All CAD
Structures

X Complex Objects Traditional Dats
Models

5. Permits Access to
Implementation Attributes

X Molecular

6. Has Distinct Object Boundaries X Object in Field Functional,
Complex Objects

7. Models Complete Lifecycle X Complex Objects Relational

8. Represents Complex Data Types X Complex Objects Functional

9. Suitable for Graphical Design X Molecular QUEL as a
Data Type

10. Contains Classification Criteria X Molecular

11. Separates Object Requirements
and Object Capabilities

X Molecular

12. Retrieves Objects using
Abstract Criteria

X

13. Can Organize Archive for
Distributed Systems

X

14. Can Organize Archive for Data
Sharing and Integrity Constraints

X

15. Suitable for Large Scale
Applications

X Relational QUEL as a
Data Type

KEY: W=Weak, A= Average, S=Strong

NOTE: The contents of this table are justified in the following sections.

www.manaraa.com

184

11.2 Contributions to Software Engineering and CAD/CAM

11.2.1 To Semantic Modeling of CAD Data

1. Model must mirror the designer’s conceptual view o f data.

Evidence in recent research reveals th a t this feature is supported by

logically separating design objects into interfaces and implementations in the data

model, as is done in the molecular data model. This separation follows the

object-oriented design paradigm where the program modules are viewed from two

perspectives; the overall functional viewpoint tha t the user of the module sees, and

the detailed specification viewpoint that the implementor of the module sees. The

IDM takes this same approach to modeling design objects, allowing the designer to

manipulate only the functional definition of a module as an interface object, or to

manipulate the implementation of the function as an alternative object. An

example of a model that does not do this well is the functional model, which,

because of its mathematical "argument-in," "argument-out" orientation, m akes it

difficult to visualize the composition of the design objects.

In order to represent flow of control in the program design, interfaces and

implementations in the design reference each other through the call object, which

represents a subprogram call. However, this call has a very abstract constitution,

allowing the designer the flexibility to change and develop requirements a t any

point in the program, as well as providing the operations to help him locate

existing components to meet the needs that are specified. This approach to

software design concepts is unique to the IDM.

For CAD/CAM, the contribution of the IDM in this thesis is to provide a

new approach to modeling molecular objects. The traditional CAD/CAM approach

of using the interface portion of the object in two separate roles semantically limits

the model. By separating the dual functions of the interface into the declaration

www.manaraa.com

185

role and the call role, the model is made much more powerful and flexible in the

m anner that each part is represented.

This new approach to data modeling is a major contribution to the field of

CAD and CAD, as will be evident in design systems based on the IDM. Designers

will no longer be required to instantiate an instance of an interface object to

represent a "socket" in a CAD design. In this way, designers will become aware of

the distinction between interfaces used to represent existing reusable parts and

interfaces tha t merely hold a place in the design to "call" some sub-part. The

design process will reflect this distinction conceptually as well as graphically. As

the designer adapts to this notion and learns to fully develop his requirements and

constraints interactively before attem pting to implement them, the number of new

interfaces and alternatives created during a design will be greatly reduced. This

will not only save space and effort, but will also hopefully lead to greater accuracy

in the final software product.

2. Model must mirror the designer’s conceptual view o f the design process.

In both CASE and CAD, the design process is incremental and

evolutionary. I t is a structured procedure tha t repeatedly reduces large problems

into several smaller subproblems. The IDM supports this approach through the

semantic structure of the alternative object, where the implementation of a module

is modeled as a series of calls to subprograms. The call object further supports the

concept of interchangeable parts by providing a variable-shape socket which can

adapt to components available to fill it. This contributes to CASE and CAD by

providing object structure and operational support for design, unlike models such as

complex objects th a t generally lack the semantics that give meaning and

constraints to this process.

www.manaraa.com

186

Since the division of large problems into smaller ones can also take

advantage of both bottom-up and top-down techniques, the IDM supports both of

these approaches. In fact, any reuse of existing components is inherently a

bottom-up activity. In the IDM, modeling the alternatives of modules as

subprogram call encourages the top-down design approach. The binding of existing

components from a reusable software library to the call objects encourages the

bottom-up approach.

3. Model must efficiently represent the object structures found in CAD.

Any CASE or CAD data model m ust be able to effectively represent

recursive, non-recursive, disjoint, and non-disjoint objects. As discussed in Chapter

2, the traditional relational, hierarchical, and network data models universally lack

this ability. On the other hand, CAD data models such as complex objects are

designed expressly for this purpose and can model all of these object types. It

remains to show only that the IDM can also model these object types, as they

appear in software.

Any simple program design is an example of a disjoint, non-recursive

object, and can be easily represented in the IDM structure. As an example of a

recursive structure modeled in the IDM, consider a design for a factorial function,

as shown in Figure 11.1. The first call to "Fact!" has bound to it a interface for

the factorial function and an alternative that implements the function. The

alternative, in turn, has code that includes a recursive call. This call has bound to

it the same interface and alternative as the first call. In the graphic representation

of this situation note that a more intelligent routing algorithm would draw the line

representing the call around the module box rather than through it.

www.manaraa.com

187

F a c t !
v . 0

F a c t
v , 0

Figure 11.1. A Recursive Call

As an example of a non-disjoint structure, consider two routines, say a

mouse m anager and a keyboard manager, that need to know the position of the

keyboard cursor. They both make calls to a subroutine, "Cursor Position," that

supplies this information. Since the original calls from "Mouse M anager" and

"Keyboard Manager" are unique, they are represented by two call objects.

However, since the same interface and implementation are bound to these calls, all

subsequent actions are non-disjoint. Therefore, the calls made by "Cursor Position,"

namely "Mouse On," "Get X," and "Get Y," are all represented only once.

4. Model must allow multiple implementations/ configurations/ and versions of a design

object.

The IDM models multiple alternative implementations and versions of

modules through the association abstractions described in Chapter 3 and Appendix

I. These abstractions are "Alternative list" and "Version list." Configurations

are considered alternative implementations, since they typically consist of minor

variations of an alternative made in order to conform to local site requirements.

www.manaraa.com

188

Mouse
IManager |
v. 0

\ t

I Cursor
P o s i t io n

Mouse.On

Keyboard
Manager

v. 0

C u r s o r
P o s i t i o n

/ x / “ X
Ge t_ X Ge t _ Y

X / X /

Figure 11.2. A Non-Disjoint Call

The IDM fully represents these concepts, although not in a particularly novel or

unique fashion. The technique is similar to that in molecular and complex objects,

but is much better than a relational implementation, which is not able to

implement version control mechanisms without significant difficulty.

5. Model must allow ALL externally visible attributes o f a design object to be accessible

to the designer.

While most current CAD models, and especially the molecular model, fail

on this point, the IDM is an im portant contribution to the field of software

engineering because it clarifies the role that a software interface plays in

object-oriented programming methodology. In languages th a t support separate

compilation of module definitions (ModDefs) and module specifications (ModSpecs),

the ModDef portion is the only part of the module the designer is allowed to see.

www.manaraa.com

189

This section of the program may contain only the param eter list of a module and

whatever other comments the original programmer chose to include; all details

contained in the ModSpec are inaccessible. However, it is likely that more

information, particularly about the performance characteristics of the module, must

be known before the module can be used. Unfortunately, this information is

contained in the ModSpec.

The IDM data model stresses the fact th a t certain implementation-specific

attributes of modules are visible across this interface and should be readily

available to the designer. This information is contained in the performance

attributes section of the alternative object. These attributes allow the designer to

make a more informed decision about the usefulness of a reusable part in a given

application.

6. Each part of the model should have a distinct boundary.

The IDM has a strict sense of object boundaries in the model, both for the

enforcement of structured programming scope rules as well as for database system

efficiency. The scope rules are dependent on the declaration structure of the design,

which is viewed and manipulated through the PSS diagram editor, and effects the

"Declarations" and "Declared by" fields in the model. Efficiency of database

operations is also a major concern, and for this reason the distinctness of object

boundaries is strictly adhered to. This issue is fully discussed in Section 9.6.3; the

important point is that only those objects specifically needed for an operation are

retrieved by the database.

The IDM is therefore considered to be very strong with regard to this

modeling requirement. Another model that does well in this area is the

object-in-a-field model, in which object boundaries are clearly delineated by storing

www.manaraa.com

190

all the subparts of an object in a single abstraction. Objects tha t do poorly defining

object boundaries are (1) the functional model, in which it is difficult to separate

functions which define attributes and functions tha t define relationships to other

objects, and (2) the complex object model, in which one experiences the same

problem as with the functional model, except with the tuples th a t comprise the

object.

11.2.2 To Semantic Modeling of CASE Data

7. Model must support all phases of lifecycle, from requirements through to maintenance.

The IDM, while being particularly effective in the middle stages of the

software lifecyle, depicted as "Product Design" to "Code" in the waterfall model of

Figure 1.1, is also capable of supporting earlier and later stages of the design

process. Since product requirements are developed and stored as part of the IDM

call object, the model can be used during early stages of design to specify product

requirements in a top-down fashion. Also, since the call object has a liberal policy

regarding the modification of its attributes, the model can be used for developing

upgrades to the software as well as during the maintenance phase of programming

as the original product requirements change.

Other CAD models, such as complex objects, can be used to manage

software lifecycle data, assuming they are given appropriate semantics. Traditional

models, however, fail to perform well in this role for the same reasons they do not

handle version control well; the database schema is not flexible enough to adapt to

the dynamic requirements and design objects of CASE and CAD. The IDM makes

a contribution in this area by addressing each of the lifecycle stages in some degree

of detail. The planning and requirements phase is the responsibility of the call, the

high level design the responsibility of the interface, and low level design the realm

of alternatives. Each of these objects plays a part in the maintenance of the

www.manaraa.com

191

design.

The "code" of the program design is modeled as a series of subprogram

calls. Each call is stored in a pseudocode style format th a t is independent of any

implementation. This provides an uniform input to a post-processor or source code

generator for conversion to any one of various source languages and environments.

8. Model must be able to represent the complex data types that are prevalent in software.

As discussed in the requirement 4, like most CAD models, the IDM can

model all four of the basic CAD objects. Since in CASE, interfaces must be able to

pass data in the form of records, arrays, and linked-lists, and other such complex

structures, the data model should explicitly provide a mechanism for representing

the exchange of this information. The data model allows for the construction of

these complex data types through the "Declarations" of the alternative object. The

full implementation of this feature allows variables and param eters to be declared

as any of these user-defined types, as well as any of the basic types more

commonly used in programming, such as integer, real, etc. Models that do poorly

representing complex data types are all of the traditional models, for the same

reasons as they do not represent basic CAD objects well, and the functional model,

in which complex compositions are difficult to construct using the binary

relationships on which the model is based.

11.2.3 To Capture of Design Data

9. Model must be compatible with graphical design paradigms.

The IDM is a model with a strong sense of program structure and flow of

program control. This orientation is based on extensive research on the nature of

the major software engineering paradigms and the goals of each methodology.

Chapter 4 details these findings and the rational behind the new Program Dynamic

www.manaraa.com

192

Structure and Program Static Structure diagrams th a t resulted from this study.

The IDM and these diagrams are very closely related, based on this research.

Therefore, it is no surprise th a t the editing operations used in the PDS and PSS

diagrams have a direct one-to-one correspondence with the operations on the data

model. 11

Another data model th a t does well in graphical form is the molecular

model, especially for VLSI applications. The interface and implementation views

are ideal for visual representation, as shown in Figure 2.8. However, a model such

as QUEL as a data type lacks any meaningful graphical representation, since it is

comprised of nested database queries.

11.2.4 To Classification of Design Data

10. The model must contain machine recognizable classification criteria.

The IDM has a keyword-based object classification schema built into the

structure of each of the objects th a t comprise the model. This schema is located in

the "Description" and "Performance" fields. The values of the keywords are set by

the user, then extracted by the system for the purpose of identifying, comparing,

and retrieving the objects in the design database. While the same information can

be extracted from any model used in a design environment, only the IDM explicitly

provides this information to the database system. No intelligent extraction

mechanism or traversal of the design data is required in order to determine search

param eters, since the IDM declares these param eters in advance.

Since the IDM is the only model that has this feature, it is deemed to be

strong on this point. The molecular model, which does not address the classification

issue, and actually hides certain information, is rated poor a t meeting this

requirement.

llThis one-to-one correspondence was strictly enforced in the prototype system.

www.manaraa.com

193

11. The model must differentiate between the component definition schema and the

component requirements.

The IDM utilizes the classification schema in two roles that are distinctly

separated by the objects of the IDM th a t contain them. Unlike the molecular

model, which uses the interface object to define components in the library and also

to serve as "sockets" in the design, the IDM declares a call object to specifically

perform the latter role. Therefore, unlike in a molecular-based design environment,

where the designer has necessary restrictions on changes he can make to sockets,

the IDM allows calls, and therefore the entire program design, to interactively

develop 12 and freely evolve. And unlike the molecular model, since the IDM keeps

the software definition and requirements separated, the IDM further guarantees

the integrity of the components in the reusable archive. Because of this separation,

a semantic conflict cannot arise over the role of an object in the design. In the

IDM, interfaces and alternatives are always used to define software components,

and calls are always used to reference them. Therefore, the IDM is considered

strong on this point, whereas the molecular model is considered poor.

11.2.5 To Retrieval of Design Data for Reuse

12. Model must support object retrieval strategies that successfully locate reusable

components utilizing only abstract criteria.

Two separate object retrieval strategies th a t meet this requirement have

been discussed and implemented for use with the IDM. The contribution that the

IDM makes in this area is the incorporation of a major reusability issue in the

design of a new data model and the application of retrieval algorithms in a

prototype system. The prototype implementation has demonstrated that the IDM is

strong meeting this requirement.

12 Hence, the Interactive Development Model.

www.manaraa.com

194

11.2.6 To Archive Storage of Reusable Components

13. Model must be compatible with an archiving method that supports distributed CASE

environments.

A library organization that supports a distributed CASE environment and

is compatible with the IDM model has been shown and implemented. This archive

organization places publically accessible components in a central archive, and

places components under development in private directories th a t can be physically

located on individual workstations or private directory filespace. While individual

library organizations are primarily site-dependent, this model stresses the need for

support of distributed CASE environments from the semantic perspective. The

library organization for this model, in providing a division between public and

private storage, is designed to meet this criteria, and for this reason, the IDM is

rated strong for use in distributed systems.

14. Model must allow sharing of data among users in a distibuted CASE environment.

The library organization presented allows several users to develop different

portions of a software design in parallel. In the IDM, the partially completed

designs can be shared by checking them in and out of the public archive. This

technique is used in order to guarantee the integrity of partially-completed designs.

However, while allowing a means for data sharing, it does not provide support for

truly merging parallel efforts. When several designers operate on the same design,

the last design checked into the public library will take precedence. Therefore, the

IDM is only rated average for its ability to promote data sharing. Nonetheless,

database integrity in these situations has been extensively studied, and a locking

mechanism can be incorporated into an implementation system.

www.manaraa.com

195

11.2.7 To Scalability

15. Each o f the data model requirements above must be viewed in the context o f being

efficient for large scale applications.

The contributions of the IDM to requirements of scalability are in the

design of the model, and the attention it gives to the reusability issues of data

storage, design capture, classification of components, retrieval of components, and

organization of a reuse library. In the chapters of this thesis th a t address each of

these issues, the problem of making the issue effective for programming in the

large is addressed. This takes the form of a consistent concern for time and space

trade-offs in the classification and retrieval algorithms and strategies, to the

"economy of scale," levels of abstraction, and object boundary considerations given

to the graphical representations and the software archive. The IDM is intended to

be a large scale systems model.

11.3 Contributions of the Implementation

The implementation of the data model on the ROSE engineering database

system is also innovative and noteworthy. Since ROSE provides many features of a

relational database, such as a query language based on a relational algebra, and many

features of an object-oriented database, such as clustering related data into objects, the

system prototype performs well in two ways. First, the relational orientation provides a

fast and efficient search facility for queries and updates. Second, the object-oriented

facility provides the semantic qualities necessary for the data model, as well as efficient

handling of the design and graphics objects.

Finally, one particularly unique .feature of the system prototype presented in

this thesis is th a t the database not only serves to organize the design data, but the

database also manages all of the information related to the menus, editing windows,

and graphics. This is significant in th a t it demonstrates the flexibility and power of

www.manaraa.com

196

supporting a CASE environment with a database system. Additional details on

implementation and interface issues can be found in Appendix III.

11.4 Conclusion

The EDM was developed with the above fifteen requirements in mind, as they

apply to the definition of a data model for use in a CASE system for software reuse. It

has been shown how the IDM addresses each of these points, and therefore qualifies as

a candidate data model for these applications.

The major contributions of the model are in specialization of database objects to

perform the two roles of a software interface, and in the subsequent flexibility

throughout the design process that this enhancement gives the designer. This also has

an impact on the traditional view of object-oriented design, pointing out that some

implementation details m ust be included as part of the externally visible attributes of a

module traditionally included in the module interface.

A significant effort has also been dedicated to studying various issues

surrounding the reusability problem and how the EDM addresses these issues. For the

capture of software design data, a new type of Structured Design editor was developed

that uniquely corresponds to structured programming and the new data model.

Numerous software classification and object retrieval techniques were studied, with

several of these implemented in order to study and demonstrate the effectiveness of the

IDM with these techniques. Finally, a software library organization th a t supports the

three types of objects in the IDM and supports distributed software development

environments was developed. Never before considered as an integrated package, the

research on these issues highlights the importance and complexity of reusability in

computer aided software engineering and proposes a viable solution.

www.manaraa.com

1 2 . F U T U R E W O R K

12.1 Introduction

Although the data model in this thesis addresses many issues surrounding data

m anagement and storage requirements for software engineering, not all of the problems

in this field have been identified, much less solved. To date, there rem ains several areas

in which there are open questions and in which more work needs to be done. Some of

these areas are discussed below.

12.2 Research Topics

While it has been discussed how the IDM supports the entire software

development process, the prototype implementation primarily addresses the middle of

the software lifecycle, ie, the component and module levels of design as described in

[Phi86, Phi88]. While the model is capable of modeling design data across the entire

lifecycle, this particular prototype is not m eant to give much support to the early

requirements phases and the later testing and maintenance phases of design. This

decision was made for several practical considerations and real problems.

The decision was made not to concentrate on analyzing problem statem ents

because this area is very nebulous, difficult to quantify, and still seems to require large

amounts of direct hum an participation. The keyword classification schedules in the call

that depict software requirements are minimal, and a study of w hat kinds of

information are necessary to complete a requirements statem ent in this context is

worthwhile. The coding, testing, and maintenance phases are not specifically addressed

because they tend to rely on a different set of software tools than the database supplies,

for example, compilers and test case generators. However, the model is capable of

storing a source-language independent form of pseudocode that can be interpreted by an

additional tool or post-processor. The data model should adequately provide the input

197

www.manaraa.com

198

and support for these tools.

Furtherm ore, since the call object is a very dynamic structure, it may be

desirable to m aintain a log or history of the development of the call. This would be a

particularly usefull feature during maintenance of the product. Some form of version

control for call objects that is perhaps similar to tha t used for alternative objects may

be required.

A desirable feature of a CASE system is to allow the user to view or design a

program using one of several techniques or levels of abstraction. While earlier research

[Pou88a] identified the difficulties surrounding automatically generating multiple

representations of a design from a common store of data, it is possible to provide the

tools for the user to do these things himself. For this reason, the prototype has been

developed with the capability to add any number of graphic design and documentation

editors as the system evolves. Future work would be to investigate the interaction of

these tools within the context of a CASE system based on the IDM.

An additional goal is to expand on the ability to allow the user to specify a level

of abstraction from which he wishes to view the design. Currently, levels of abstraction

are supported by showing and hiding levels in the calling of declaration structures of the

program. There is good reason to allow the user to further define his own levels of

abstraction, possibily based on a conceptual rather than physical organization [Rov88].

At a high level, for example, an operating system would be viewed as a set of logical

components such as the I/O component and the Memory Manager Component; in the

actual design these have no direct physical counterpart. At the low level, these

components are specific functions composed of variable declarations and code. While an

actual implementation for this kind of abstraction mechanism needs to be researched

further, it is believed that logical abstractions can be provided by how the application

software interprets the data stored in the model.

www.manaraa.com

199

One major remaining concern involves accommodating the major role that data

structures play in the design of programs and software systems. Most software design

methodologies concentrate on the functional requirements of the system and almost

completely ignore the design of the underlying data structures. Although it is believed

that the software design process is a parallel development of functions and data, the full

extent of this relationship and how the data model supports it needs further study.

There are several additional practical considerations surrounding the

implementation of the prototype. These arise out of the trade-off that m ust be made

between the desire to make the system as realistic and usable as possible, and the need

to be able to actually code the desired features. One such problem is providing

interfaces for the definition and querying of the highly recursive code and data

structures. While the data model is designed to accomodate these requirements, a

compromise in the implementation of these issues has been made. Further time and

effort in this area can add to the findings of this research.

www.manaraa.com

13. DISCUSSION AND CONCLUSIONS

In light of the numerous advantages of database support for the engineering

design process, much research has gone into applying this technology to CAD, especially

with respect to VLSI design. Little, however, has been done to use this knowledge in

the design of software. This research has identified several of the important similarities

as well as some significant differences in the two domains. These include the question of

reuse of program modules, version control requirements, and storage representations.

Reusability of software, while a complex melding of the issues of capturing, classifying,

storing, and retrieving software design data, may prove to be the most productive

approach to software engineering. This thesis demonstrates a data model specifically for

use in CASE that addresses these issues, and identifies valid operations on the model.

This three-part data model separates the interface portion of the molecular

object model into two distinct portions. These two parts reflect the two different roles

tha t an interface has in the semantic representation of design data. First, the interface

defines and represents the object. Second, the call is used to a request service from the

object. Finally, the implementation of the object is contained in the third part of the

data model. Operations on this model are identified and are adapted to the roles each

part of the model plays in representing the software module.

The major contributions made by this model to the fields of software engineering

and engineering CAD center on the explicit effort this model makes to support reuse,

and the new approach the model takes to representing molecular objects. The separation

of the interface into the module call and module definition portions more closely

describes the actual roles of these entities in a program design. This separation also

allows the model to customize operations on each part, in particular, to assist the

designer in locating previously defined interfaces th a t meet the requirements of a

current subprogram call. Finally, by providing a location in the model for recording

2 0 0

www.manaraa.com

201

design constraints, software requirements have been made an integral part of the

design process. No other CAD data model addresses this relationship between software

requirements and the final product.

A prototype implementation of a language-independent CASE environment based

on these modeling ideas has been completed. Several graphical editors are provided,

including a type of Structured Diagram editor, a program structure editor, and a

variety of formatted text entry tools. A comprehensive data retrieval mechanism is

provided and is based on the software classification schema built into the IDM. The

prototype stores design objects in a software library that is organized both to support

the three types of data objects in the IDM as well as the special requirements of a

distributed design environment. All design tools are incorporated into design editors and

activated through a series of pull-down menus. A sample terminal session in this CASE

environment is shown in Figure 13.1. Special emphasis has been placed on providing

flexible access to the reusability characteristics built into the model.

www.manaraa.com

202

(9
S tn jc tu ra
I v i t i * I t *

O a l a t a *•*»

• • 1 1 9 l t «3 a tto * «

a t c h t
• • t a i l • o * r * * » t * r >

!*»• « • • • • o*r*M«c«pr
L i s t • « r * * w o y t y p «

L i s t f r * m o y d i r e c t i o n

9 « u u
Q r i | l n

C n ta r t * 9 t y n o * o m r

a t t a i n t ' a ' t n t w t :
l n t « f a r
1*m t i T M W i t n « « * r « q * t y * « * r * i

C /0 ' • e « « « l « t N
k l n a a a n n t * #

Figure 13.1. Sample Session with the CASE Tool

www.manaraa.com

APPENDIX I: Prototype IDM Structure

www.manaraa.com

Interface

/ / ~\ \
Int_Hdr_Info Description Parameter_List Alternative_list

(below)

Comment Keywords Parameter Alt_Name

File name Sentence Variable Local Name Direction

/ / / / \ \ — ^
Name VID Tag Comment Declared_by Used_by Type

Field Composition

Int Hdr Info

■ h
ZT 3 F = = \

Int_Name Tag Date Designer

Keywords

/ " / / A \ ~ \
Function Input Output Medium Language Environment

Figure Al. 1. Interface Object Structure

www.manaraa.com

205

Alternative

7
Alt_Hdr_Info Declarations Comment Performance Version_list

(below) (above) (below)

/=Y Version
Subprograms Variables

Alt Name VID

Version No History Representations Code

Representation LOC

CID Type Condition

Who WhatDate Why Approval_date Approved_by

Alt Hdr Info

f . ^

Alt_Name Int_Name Tag Declared_by Date Designer

Performance

/ \ v
Component Version Time Space

Figure A 1.2. Alternative Object Structure

www.manaraa.com

206

Call

/ /
Call_Hdr_lnfo Parameter_list Description Performance Plug_Info

(above (above)(above)

Int static Bound Int Alt Static Bound Alt

DesignerCID Call_Name Tag From Date

Figure A 1.3. Call Object Structure

www.manaraa.com

APPENDIX II: Operations on the IDM

15.1 Introduction

This appendix gives a detailed analysis of the allowable operations on the

Interactive Development Model and the constraints tha t m ust be enforced during the

execution of those operations. The purpose of this appendix is to provide the detail

necessary to guide any implementation of the model, as well as to substantiate the IDM

from a theoretical perspective.

All of the operations presented here have been implemented as p a rt of the

IDM-based CASE prototype discussed in chapter 8.

15.2 Interface Operations

15.2.1 Constraints

In order to allow direct access to interfaces by name, the interface name is used

as an index. This places the restriction on all interfaces tha t the names of each

interface be unique. In order to enforce this constraint, a check of the interface archive

is completed before the create interface operation is allowed to complete.

The attributes of an interface are considered non-modifiable. This is because the

interface, along with a group of alternative objects, defines a software module. If it were

permissable to modify the interface, then it would be possible for. the designer to change

the interface in ways th a t are not supported by some or all of the alternatives that

implement the interface. If this were so, the interface would no longer accurately

represent the module th a t it serves to define. For this reason, there is no edit interface

operation. The correct course of action when a change to an interface is desired is to

copy the interface into a call object, make the desired modifications using the edit call

operation, and then create a new interface from the call. This method has the added

advantage of allowing the designer to leave the interface in a partially-defined state for

2 0 7

www.manaraa.com

208

as long as is deemed necessary by storing the information as a call object.

In order to ensure that no "orphan" alternative objects are created in the

software archive, the deletion of interfaces is not allowed when there exist alternative

implementations for the interface in the library. However, removal of interfaces having

no alternative objects implementing a function is permitted. A note of particular interest

is that, in general, it is desirable to indefinitely m aintain all interfaces in the software

archive for a variety of documentation and legal reasons. While it is not practical to

absolutely deny deletion rights to the designer, it may prove worthwhile in a production

environment to supplement or replace the deletion operation with a sleep operation,

which would have the effect of moving the module objects to a long term archive or

storage medium such as tape.

The only remaining matter for consideration is the viability of copying

alternatives for an interface when the interface is copied, and likewise whether to copy

versions along with the alternative when an alternative is copied. The semantics of the

IDM allow some flexibility on this point, although it is preferred not to make these

copies. The reason is tha t there is no way to enforce whether the newly created

interface or alternative will perform the same action or in the same m anner as the

original; it m ust in fact be presumed that this is not the case. Therefore, copying such

information would guarantee that at least for a time there will be inconsistent

information in the database.

However, it is conceivable that such a copy should occur. Assume that a

complete, tested interface and alternative implementations for tha t interface exist.

Suppose that the represented object is a routine th a t sorts an integer array. Now

assume that the designer wishes to create similiar routines to sort a real array.

Normally he would create a copy of the integer routines and simply use the find/replace

function in his text editor to make all occurrences of the keyword "integer" into the

www.manaraa.com

2 0 9

keyword "real." Including such an operation is viable, as long as these issues are

understood. Note that if this function is provided it is necessary to differentiate the new

objects from the old by making copies of the calls in each alternative and assign new

surrogate identifiers to each.

15.2.2 Operations

16. create_interface: this creates a template for a new interface in the workspace and

allows unrestricted modification of the interface attributes. This operation provides

the designer with the ability to generate completely new, as yet undefined,

interfaces. As in the previous operation, when this process is complete, the

interface may be frozen and become the definition for a new object, or it may be

saved as a call for later modification. Therefore, the result of this operation is

either a new, complete interface object or a new call object.

17. copy_interface: this copies an existing interface into the workspace as a call object

and allows unrestricted modification of the new call’s attributes. This allows the

designer to save time and effort when creating a new interface by using an

existing interface that may be similar to the one desired. All of the fields in the

new call object are given the values in the fields of the copied interface. When all

of the attributes have been assigned desired values using the edit call operation,

and the modifications are complete, the interface m ay be frozen using

create interface and it becomes the definition for a new object. If this action is

chosen, the designer will, of course, be required to choose a new name for the

interface so as to differentiate it from the interface from which it was created.

However, if the interface definition is not considered complete, the information

contained in the partially completed interface may be saved as a call object.

Therefore, the result of this operation is either a new, complete interface object or

a new call object.

www.manaraa.com

2 1 0

18. retrieve_interface: fetches a specific interface from the database library using the

interface name as the key. The purpose of this operation is to provide access to the

interfaces in the software library and in the local workspace. The operation is

executed either implicitely by the system as part of a design operation, or

explicitely by the designer as p a rt of the reuse process. The result of this operation

is find the desired interface in the appropriate location and load it into the main

memory work area for general access.

19. search for_interfaces: the search operation assists the designer in locating

interfaces in the database library th a t may meet a given call by using full or

partial matches on the interface keywords and param eter list. In practice, any

number of search and retrieval strategies m ay be used; this is the topic of a later

chapter. The purpose is to provide the user with a database operation th a t directly

supports the software reuse capability of the CASE system. The result of the

search operation is the identification and retrieval into main memory of one module

or a group of modules th a t meet the search criteria. If no modules m eet the desired

criteria, a null result is obtained. Any modules identified as part of the search

operation can be used as the source interface for most of the other interface

operations.

20. bind interface: associates the interface with a call in the program design. The

purpose is cause the bound interface to be invoked whenever the associated call

object is executed. During program design, invoking the interface from a call

implies that the designer has located and approved of the use of that interface to

meet the need specified in the call object. The binding association may be

permanent, or subject to constraints that are dynamically evaluated when the call

is evaluated. The effects and advantages of dynamic binding are discussed above.

The result of this operation is the storing of a reference pointer in the call to the

www.manaraa.com

211

bound interface.

21. display_interfaee: shows all the attributes of the interface to the designer. The

purpose is to allow the designer to view the attributes for his information. The

attributes to be displayed include any administrative information, descriptive

keywords, and param eters. The result of the operation is to output the attributes

in a specified format in a design window or on some other working surface.

22. display_altematives: shows all the alternative implementations of the interface to

the designer. The purpose of the operation is normally to allow the designer to

choose among the available alternatives a possible candidate for use in the current

application. The alternatives may be browsed, during which time they are subject

to the operations on alternatives below. Therefore, the result of this operation is

dependent on the operations conducted during the browsing process.

23. delete_interface: removes the interface from the library. The purpose of this

operation is to explicitely remove from the library any interfaces th a t are no longer

desired. As discussed above, in order to prevent the creation of orphan

alternatives, this operation is disabled if there are alternative implementations for

the interface remaining in the database. The result of the operation is to remove

all evidence of the interface from the public archive and private workspaces.

15.3 Calls

15.3.1 Constraints

In the IDM the call is always considered to be unique. In other words, every

request for service is somehow special, and every call object in the design represents

exactly one such request. A further explanation of this uniqueness follows.

When copying a call, what does the designer seek to do? In the IDM it is

determined that he is developing a similar (or, for that matter, exactly the same) call

www.manaraa.com

212

for use somewhere else. Still, because it is made from a new location it m ust be

different. In database terminology, it is an instance of a request. As an example,

consider a fictional routine "get char {c}” as it might be called from the two routines

"read int {I}" and "read string {S}." There are, in fact, two calls made. W hat is the

same in this case is that the same interface, namely the one for "get char," is bound

to both calls. Still, only one copy of the interface and alternatives for "get char" exist

in the database.

This uniqueness of the call object forces the constraint th a t every call be

identified, and therefore indexed, by a surrogate system-generated identifier. When

operations on the model might effect the uniqueness of the call, care m ust be taken to

ensure that these identifiers are not duplicated.

A call may or may not an interface and/or an alternative bound to it. However,

calls m ay not have an alternative bound to the call without an interface also being

bound to the call. The further restriction implied here is tha t the interface tha t is bound

to the call is the interface th a t defines the alternative th a t is bound to the call. This

prevents attem pts to mix interfaces with alternatives th a t are defined by other

interfaces, or attempts to leave an alternative without a defining interface. Of course, it

is possible to bind an interface to a call without binding an alternative for the interface

to the call.

15.3.2 Operations

1. create_call: creates a template for a new call in the workspace. The purpose of the

operation is to generate module calls whenever and wherever they are required.

Upon creation, the call template is assigned an unique surrogate identifier for

indexing purposes. This operation has the effect of generating a generic, abstract

request for service, which can be referenced from any point in the current program

design. The operation results in adding the call object to the database and caching

www.manaraa.com

213

the call for subsequent operations.

2. copy_call: retrieves an old call using the retrieve option and copies the call into the

workspace. This has the effect of creating a new call with all the attributes of the

original, except for the surrogate identifier used to identify and index the call.

Instead, a new surrogate identifier is created and used. The purpose of the

operation is similar to that of the similar operation for interfaces; it saves the

designer time when creating multiple instances of similar calls. However, in the

case of the call object, the copied call may have all of its visible attributes identical

to the source call, such is the case when a given routine is called from multiple

locations. The names of any interfaces and alternatives tha t are associated (bound)

to the call are also copied, since it is presumed th a t the same request will be filled

with the same routines. As a matter of administration, the designer’s name and

date are not copied, and should be entered by the person requesting the operation.

The result of the operation is the addition of a new call object to the database and

the caching of the call for subsequent operations.

3. retrieve_call: is used by the system to locate calls in the database library. The

purpose of the operation is to provide fast and efficient access to the information

about software requirements at a given location in the program design. Because

the search key is a hidden surrogate identifier, this operation is indirectly

accessible to the designer. After completing the search for the call, the system

caches the identifier of the selected call for subsequent operations.

4. edit_call: allows unrestricted modification of the call. This operation allows the

program design to evolve and change without comprising the integrity of the

interface and alternative objects that define the design modules. All of the

constraining keywords, comments, and administrative information may be edited.

The identifying surrogate key is, however, immutable. The result is the

www.manaraa.com

2 14

replacement of the old values of the call attributes with the new values specified

by the designer.

5. make__call: gives a call object a point of call in the code of an alternative. The

create call operation makes a new call and allows the request for service to be

developed; this operation assigns the call to a location in the code of the program

design. The operation results in the addition of the surrogate identifier for the call

being added to the code for the alternative that is specified as part of the

operation. The identifiers for all calls made within an alternative are logically

stored in the order in which they will be made during execution of the program.

6 . unmake_call: removes a call object from a point of call in the code of an

alternative. The purpose of this operation is to remove a service request if it is no

longer needed, or to allow the designer to change the order of the requests. Of

course, the call must be actually made from the specified alternative for the

operation to successfully complete. The operation results in the surrogate identifier

for the call being removed from the code of the specified alternative object.

7. unbind_interface: manually removes an existing association between a call and an

interface, if such an association exists. If none exists, an error occurs and no action

is performed. Then this operation removes any existing association between the

call and an alternative. This prevents the existence of a call with a bound

alternative and no bound interface. The purpose is to disassociate modules from a

point in the program where they are called, an action which may be done a t the

designer’s discretion any time during the design process. The resulting action in

the data model is the removal of the key identifier for the bound object from the

"Bound" field of the call and replacing the identifier with a null value.

8 . unbind_altemative: manually removes an existing association between a call and

an alternative, if such an association exists. If none exists, an error occurs and no

www.manaraa.com

215

action is performed. The purpose is to disassociate alternatives previously thought

appropriate for use in a call. Like the previous operation, this disassociation is

done at the designers discretion. The resulting action in the data model is the

removal of the identifier for the bound object from the "Bound alternative" field of

the call object and replacing the identifier with a null value.

9. fill__call: automatically finds all interfaces and alternative implementations that

m eet the requirements of the call and chooses one. The purpose of this operation is

to provide automatic database support for the dynamic binding of design objects to

calls as discussed above. If none are available, the system advises the designer.

The result of the operation is that, if an appropriate interface and alternative are

located within the constraints of the call, the identifiers for those objects are stored

in the "Bound" fields of the call object.

10. display_call: shows a call from the design database to the designer. This operation

allows the designer to view the attributes of requests for service. The operation

results in the call being output to the terminal in a predetermined format.

11. delete_call: removes a call from the database. This operation allows to eliminate

requests for service when they are no longer needed, or when the designer changes

his mind. Any alternatives or interfaces bound to the call are not effected. The

operation results in all evidence of the call being removed from the designer’s

workspace.

15.4 Alternatives

15.4.1 Constraints

An alternative cannot come into existence without an interface to represent it.

Therefore, before creation of any instance of an alternative object, an interface for the

alternative m ust be specified. The interface that the user specified for the new

www.manaraa.com

216

alternative is confirmed by the system.

As is the case for interfaces, alternative objects are indexed by name. This

provides the user with a direct method to retrieve specific objects by the same name

that he assigns them. In the case of alternatives, however, the alternative is dependent

on its defining interface for its identity. Therefore, the complete key for an alternative is

a two-tuple consisting of (interface name, alternative_name), and therefore the name of

every alternative for a given interface m ust be unique.

15.4.2 Operations

1. create__alternative: creates a template in the workspace for a new alternative. The

purpose is to allow the designer to develop a new implementation method for an

existing interface. The result of the operation is the addition of a new alternative

object in the database, where it is cached for further operations. The name of the

defining interface is stored in the alternative object as "Int Name" and the

identifier of the newly created alternative is added to the alternative list in the

defining interface.

2 . copy_alternative: copies an existing alternative implementation into the workspace

using the retrieve alternative operation. This makes a copy of the alternative in

order to serve as the basis for another alternative. Like the similar operations for

interfaces and calls, this operation exists to save the designer time. By default, the

new alternative will be for the same interface as the original. The result is the

creation of a template for a new alternative, with the values of the attributes of

the copied alternative copied into the new template. A new alternative is then

added to the database, where it is cached.

3. retrieve_alternative: fetches an existing alternative from the database library using

(interface name, alternative name) as a key. The purpose is to provide access to

the alternative for other operations. If the alternative is not in the local workspace

www.manaraa.com

217

then it is read from the public archive, as required. The result of this operation is

first ensure the specified alternative is available, and then to cache the alternative

for access by subsequent operations.

4. search for_altematives: assists the designer to locate alternative implementations

in the library for use in a given call. This operation works with the

search for interfaces operation in supporting the reuse of software components.

The search is based on alternative specific data such as performance attributes,

and m ay use any of the search and retrieval strategies discussed in later chapters.

The operation functions on alternatives for a previously specified interface. The

result is to cache an alternative of the interface for input into subsequent

operations.

5. bind_alternatiue: associates the alternative with a call in the program design. The

purpose and results are similar to those for the bind interface operation. The

association between a call and alternative, like th a t for the interface, m ay be

perm anent, or subject to constraints that are dynamically evaluated when the call

is evaluated. When the binding is made, it is reflected in the data model by storing

the identifier of the bound alternative in the "Bound" field of the appropriate call

object.

6 . edit_altemative: allows modification of the alternative. This provides the designer

to change comments and performance information about the alternative when it

changes as part of the program design. All performance data and administration

information is modifiable, with the exception of the alternative name and the name

of the representing interface. The alternative name cannot be changed because it

serves as the key for the object and its uniqueness m ust be guaranteed. The name

is also used in any call object tha t currently binds the alternative. Normally, when

alternative modifications are complete, a new version number is assigned and the

www.manaraa.com

218

modification log updated; this process is explained below as part of the version

constraints and operations. This operation replaces the old attribute values with

the new values in the database.

7. display_altemative: shows all the attributes of the alternative and its interface to

the designer. The purpose is to assist the designer to select an alternative for his

application as he browses the alternatives available for a given interface. The

displayed attributes include any administrative information, performance

attributes, and version data. The display operation results in the attributes being

shown in a predetermined format in a window on the workstation screen.

8 . display_versions: shows all the versions of the alternative to the designer. This

operation makes it possible to select among the various versions of an alternative,

and to trace the development of the code for an alternative. As versions of the

alternative are browsed, they are subject to the constraints and operations below.

9. delete alternative: removes an alternative from the database. As with interfaces, it

is normal for unused or old alternatives to be kept for documentation and legal

reasons. The purpose of this operation, therefore, is to allow the designer to

manually remove alternatives when they are no longer needed. All evidence of the

alternative is removed from both the local and public databases.

15.5 Versions of Alternatives

15.5.1 Constraints

Although versions are not a separate object in the IDM schema, they are an

im portant enough part of the alternative object to deserve special attention and their

own set of constraints and operations. These constraints and operations serve an

important function in version control in the IDM.

www.manaraa.com

2 1 9

Each alternative may have any number of versions to implement its function.

One of these versions is designated as the current version, and is used for editing in the

current design. In addition, each call may constrain which version is to be used for the

call. Valid constraints are Current, Last, and specific version numbers. Since this is done

dynamically as the designed is "compiled," or evaluated, it is necessary to keep the

constrained version and the current version separate.

Once a version is created and assigned a number, it cannot be edited. I t is

modified by making a copy of the version, and then editing the copy. The result may

later become a new version of the alternative. Numbered versions can be approved, just

as the current version can be approved. The difference is that after approval, any

editing done on the current version nullifies the approval. The program is not considered

validated, or consistent, unless all of the versions bound for use in the design show

approval dates later than the version creation time.

Creation of versions is left to the designer. This allows maximum flexibility for

version control. Another option is to create a new version automatically whenever

certain changes are made to the alternative. However, this would entail classifying the

types of edits into those that justify a new version and those tha t do not, and would

undoubtably lead to a proliferation of versions.

15.5.2 Operations

1. view version: shows the designer the code and the derivation history of a single

version. As with the other display operations on the three parts of the IDM, the

purpose of this operation is to allow the designer to view w hat is available to him.

The result of the operation is the display of the version on the appropriate viewing

surface on the worstation screen.

2 . scan versions: allows the designer to browse the available versions of an object.

The code and the derivation history of each version are made visible through the

www.manaraa.com

2 20

view version operation.

3. approve version: the version passes site requirements and is validated by an

approving authority. The standards for this operation are dependent on the user,

and will vary with the implementation. In the prototype, the result of this

operation is to set the fields "Approved by" and "Approval date" to the values

provided by the approving authority.

4. copy_version: This creates a new version of an alternative using the current

version as a template. The purpose is to make changes to the code of the

alternative, but in the process saving the previous status of the code as a distinct

step in the development of the alternative. This may be required for

documentation, incremental development, prototyping, or legal reasons. Actions on

the version portion of the data model are as follows. The newly created version is

set equal to the current version. This makes the new version ready for editing.

Call identifiers within the versions are not modified to make the calls within each

version unique; this is unnecessary since only one version of the alternative is

active a t any time. This preserves and ensures the uniqueness of the call, as

discussed above.

5. set_current__version: designates the version currently being viewed as the current

version for all future references to the alternative. The current version is the

version used for editing, and is the version bound to any requesting call that

constrains the version to "current." Therefore, this operation controls how the

design is evaluated whenever calls constrain versions in this manner. The result of

the operation is to store a currency pointer in the alternative to the version newly

designated as "current."

www.manaraa.com

APPENDIX III: U ser Interface Issues

1. Introduction

User Interface considerations, although really not a part of this research,

are important for many reasons. The most important of these is that the usability

of any software tool is most directly effected by what the user sees, and

particularly how he interfaces with the tool. Another reason tha t the interface is

important is that it forms more of an initial impression about the system than

what is actually going on behind the scenes.

Nonetheless, it is necessary to develop some kind of interface in order to

demonstrate how the IDM functions in a prototype CASE environment. With this

in mind, it seems worthwhile to put some effort into the interface so that useful

observations made and added to our techniques for other applications. Finally, it is

important to demonstrate how the IDM might appear if packaged in a somewhat

reasonable fashion. However, it m ust be noted that the user interface for this

prototype is not a research issue, and for this reason this discussion has been

relegated to an appendix.

2. Text Entry Boxes

The text entry box is an effective technique for string input that provides a

fixed format, prompts, and a variety of text fonts. One big advantage is tha t the

user sees all of the entries he should make at once, and has the option of making

them in any order. This is highly preferred over many sequential prompts in the

dialogue box. The order of entry also has important consequences for the searching

functions. The particular text boxes seen in the chapter describing the prototype

are, however, uniquely ugly and somewhat large. The size is limited by the

minimum font size under the UIS graphics system, and while the aesthetics are

not so good they do not effect overall performance and functionality. All in all, the

221

www.manaraa.com

222

text box presents all the tools in one place in a standard manner. This advantage

outweighs all disadvantages.

3. Editing Palette vs. Pull-Down Menus

The editing palette used for the PDS is something learned from and first

developed as part of the CB SketchPad [Pou87]. The advantages are similar to

those experienced by Apple computer users; the hum an mind assimilates and

relates to icons faster than it can to text. However, such a palette is much more

difficult to create, change, and expand. In this regard the pull-down menu is

preferred over the palette, especially early in system development or during

prototyping. The palette also takes up a lot of screen space, which in this

application is a t a premium.

4. IPO Window

The concept of the IPO Chart is to display everything about a module in

one place in a standard format. Unfortunately, there is a lot of information that

we wish to display in the IPO, and not enough space to do it. P a rt of the problem

is due to the minimum font size in UIS. An additional problem is the nature of

some of the design information. Some information is of fixed length (designer’s

name) while other information can be of any length (parameter lists). How much

space does one leave on the chart to display such information? M any experiments

with these two problems was conducted, including writing information

microscopically small and using the zoom function to read it. Sending all

information to the dialogue window was also considered; that solution, although

much easier than filling the IPO chart, failed because the dialogue window was

also too small for all the required information. The best solution was to put fixed

length data on the chart, and list the variable length data on request to the

dialogue window. This not only cleaned up the IPO chart but also made the display

www.manaraa.com

223

operation much faster. This is method currently in use.

www.manaraa.com

APPENDIX IV: The Correspondence Between DFDs and DSDs

Earlier research concentrated on the automatic conversion of one type of design

diagram to any other type. During this study, it was discovered tha t for the most part

the methodologies could be mixed, within certain guidelines [Pou8 8 a].

The advantage of such an ability is that, assuming the design data was stored

in some standard form, any representation, or view, could be automatically generated

depending on the wishes of the user. Such a capability would be invaluable for

documentation and report purposes, or in cases where several designers or managers

wished to work on or view the program design using the diagrams of their own

"favorite" methodolgy. Since the views are created from a common store, the views are

always guaranteed to be consistent.

The major problem with such an ability comes in the creation of a DSD from

DFD-generated design data, and the converse. Both of the methodologies lead the

designer from a problem statement to a software structure. Ideally, both methods would

result in the exact same software (because there is only one "best" solution), although

in reality this is quite rare (because the methods are very different). The problem

becomes a m atter of how much information one is allowed to infer from the database. 13

Allow the discussion to take a slightly mathematical turn for a moment.

Consider a problem that has been analyzed using both the data flow and data structure

techniques. Intuitively, if a program structure (PS) for this problem is derived from the

DFD, ie, f(DFD) = PS from DFD, then f-inverse(PS from DFD) = DFD. The same

follows if g(DSD) = PS from DSD, then g-inverse(PS from DSD) = DSD. The next

question is, does g-inverse(PS from DFD) allow you to infer anything about the data

structures of the program? Does f-inverse(PS from DSD) give you a good data flow

perspective of the problem? Is such an inference valid? Could one, in general, construct

13 An excellent discussion on how the various methodologies can be used on the
same problem and yield various solutions can be found in [Yau87].

224

www.manaraa.com

225

a DFD directly from a DSD or the reverse, a DSD from a DFD? This is a m atter for

further research, although I conjecture the following two points:

1. This is not a possible transform ation since an analysis of the problem from one

perspective is completely independent of the other.

2 . The intuitive argum ent regarding the validity of the inverse function above is not

entirely correct because the function itself is not guaranteed to be unique.

www.manaraa.com

LITERATURE CITED

[Alb84] Alberga, C.N., A.L. Brown, G.B. Leeman, Jr., M. Mikelsons, and M.N.
Wegman. "A Program Development Tool," IBM Journal Research and
Development, Vol. 28, No. 1, January 1984, pp. 60-73.

[And88] Anderson, Kathryn J ., Roger P. Peck, and Thomas E. Buonanno, "Reuse
of Software Modules," in AT& T Technical Journal, Volume 67, Number
4, July/August 1988, pp. 71-76.

[Arn87] Arnold, Susan P. and Stephen L. Stepoway, "The REUSE System:
Cataloging and Retrieval of Reusable Software," in Proceedings of
COMPCON S ’87, 1987, pp. 376-379.

[Bal85] Balzer, Robert. "A 15 Year Perspective on Automatic Programming," in
IEEE Transactions on Software Engineering, Vol. SE-11 , No. 11,
November 1985, pp. 1257-1268.

[Bap86] Bapa Rao, K.V. "An Object-Oriented Framework for Modeling Design
Data," position paper in Proceedings of the International Workshop on
Object-Oriented Database Systems, Pacific Grove, California, September,
1986, p. 232.

[Bat84] Batory, D.S. and Alejandro Buchmann, "Molecular Objects, Abstract Data
Types, and Data Models: A Framework," in Proceedings of the 10th
International Conference on Very Large DataBases, Signapore, August,
1984, pp. 172-184.

[Bat85] Batory, D.S. and Won Kim, "Modeling Concepts for VLSI CAD Objects,"
in ACM Transactions on Database Systems, Vol. 10, No. 3, September
1985, pp. 322-346.

[Bee88] Beech, David and Brom Mahbod, "Generalized Version Control in an
Object-Oriented Database, in Proceedings of the 4th International
Conference on Data Engineering, IEEE Computer Society, 1988.

[Ber85] Bergland, G.D. "A Guided Tour of Program Design Methodologies," in
Chow, Tsun S. IEEE Tutorial on Software Quality Assurance, IEEE
Computer Society Press, Silver Spring, Maryland, 1985, pp. 219-243

2 26

www.manaraa.com

2 27

[Ber87] Bernstein, Philip A., "Database System Support for Software Engineering:
An Extended Abstract," in Proceedings of the 9th International Conference
on Software Engineering, Monterey, California, April, 1987, pp. 166-178.

[Bha87] Bhateja, Rajiv and Randy H. Katz, "Valkyrie: A Validation Subsystem of
a Version Server for Computer-Aided Design D ata," in Proceedings of the
24th Design Automation Conference, Los Vegas, Nevada, 1987, pp.
321-327.

[Blu87] Blum, Bruce I. "A Paradigm for Developing Information Systems." in
IEEE Transactions on Software Engineering, Vol. SE-13, No. April 1987,
pp. 432-439.

[Boo84] Booch, Grady. Software Engineering with Ada, Second edition. The
Benjamin/Cummings Publishing Company, Inc, Menlo Park, California,
1984.

[B0086] Booch, Grady, "Object-Oriented Development," in IEEE Transactions on
Software Engineering, Vol. SE-12, No. 2, February 1986, pp. 211-221.

[Bro84] Brodie, M., B. Blaustein, U. Dayal, F. Manola, and A. Rosenthal,
"CAD/CAM Database M anagement," in Database Engineering, Volume 7,
Number 2, 1984.

[Bro87] Brooks, Frederick P., J r . "No Silver Bullet: Essence and Accidents of
Software Engineeririg," in IEEE Computer, Vol. 20, Number 4, April
1987, pp. 10-19.

[Bro851 Brown, Gretchen P., Richard T. Carling, Christopher F. Herot, David A.
Kramlich, and Paul Souza. "Program Visualization: Graphic Support for
Software Development," in IEEE Computer, Vol. 18, Number 8 , August
1985, pp. 27-35.

[Buc85] Buchmann, Alejandro P. and Concepcion Perez de Celis, "An Architecture
and Data Model for CAD Databases, in Proceedings of the 11th
International Conference on Very Large Data Bases, Stockholm, 1985, pp.
105-114.

[Buh84] Buhr, R.J.A. System Design with Ada. Prentice-Hall, Englewood Cliffs,
New Jersey, 1984.

www.manaraa.com

2 28

[Buh89] Buhr, R.J.A., et al. "Software CAD: A Revolutionary Approach," in IEEE
Transactions on Software Engineering, Vol. 15, No. 3, March 1989, pp.
235-249.

[Bur87] Burton, Bruce A., Rhonda Wienk Aragon, Stephen A. Bailey, Kenneth D.
Koehler, and Lauren A. Mayes, "The Reusable Software Library," in
IEEE Software, July, 1987, pp. 25-33.

[Cad87] Cadre. "Teamwork: A Management Overview," Cadre Technologies, Inc.,
1987.

[Cam86] Cammarata, Stephanie Jo, "An Object-Oriented D ata Model for Managing
Computer-Aided Design and Computer-Aided M anufacturing Databases,"
Doctoral Dissertation, University of California, Los Angeles, 1986.

[Cam88] Cam marata, Stephanie, et al., "Panel: Is ’Object-Oriented" The Final
Solution to DBMS Problems?" at Fourth International Conference on Data
Engineering, Los Angeles, California, February, 1988.

[Cam83] Campos, Ivan M. and Gerald Estrin, "Concurrent Software System
Design Supported by SARA at the Age of One," in Tutorial on Software
Design Techniques, 4th Edition, ed. Peter Freem an and Anthony I.
W asserman, IEEE Computer Society Press, Silver Springs, Maryland,
1983, pp. 353-365.

[Cha85] Chamiak, Eugene and Drew McDermott. Introduction to Artificial
Intelligence. Addison-Wesley Publishing Company, Reading,
M assachusetts, 1985.

[Che84] Cheatham, Thomas E. Jr., "Reusability Through Program
Transformations," in IEEE Transactions on Software Engineering, Vol.
SE-10, No. 5, September 1984, pp. 589-594.

[Chu87] Chung, Moon-Jung, Ephraim P. Glinert, M artin Hardwick, Edwin H.
Rogers and Kenneth Rose. "Toward an Object-Oriented Iconic
Environment for Computer Assisted VLSI Design," Department o f
Computer Science Technical Report Number 87-3, Rensselaer Polytechnic
Institute, Troy, New York, February, 1987.

[Con87] Conn, Richard, "The Ada Software Repository and Software Reusability,"
in Proceedings o f the Fifth Annual Joint Conference on Ada Technology,
Washington Ada Symposium, 1987, pp. 45-53.

www.manaraa.com

2 2 9

[Cor8 7] Corliss, George F., "Design of an Ada Library of Elementary Functions
with Error Handling," in J. Pascal, Ada, Modula-2, Vol. 6, No.3,
May-June 1987, pp. 17-31.

[Dat85a] Date, C.J., An Introduction to Database Systems, Volume 1̂
Addison-Wesley, Reading, Massachusetts, 1985.

[Dat85b] Date, C.J., An Introduction to Database Systems, Volume 21
Addison-Wesley, Reading, Massachusetts, 1985.

[Dav83] Davis, William S. Tools and Techniques for Structured System Analysis
and Design Addison-Wesley Publishing Company, Reading,
Massachusetts, 1983.

[Day83] Day, F. W. "Computer Aided Software Engineering," in Proceedings of the
ACM IEEE 20th Design Automation Conference, Miami Beach, Florida,
1983, pp. 129-136.

[DeB85] De Bruin, R. and Van Der Laan, C.G., "The Creation of a Virtual
NAG-ALGOL 68 Program Library," in Software Practical Experience,
Vol. 15, No. 10, October 1985, pp.963-972.

[DEC84] DEC. "U ser’s Introduction to VAX DEC/CMS," Digital Equipment
Corporation, Maynard, Massachusetts, 1984.

[Der85] Dershowitz, Nachum, "Program Abstraction and Instantiation," in ACM
Transactions on Programming Language Systems, Vol. 7, No. 3, July
1985, pp.446-477.

[Dei84] Deitel, Harvey M. An Introduction to Operating Systems. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1984.

[DeM78] DeMarco, Tom. Structured Analysis and System Specification.
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[Dep83] Depree, Robert W., "Pattern Recognition in Software Engineering, in IEEE
Computer, Vol. 16, No. 5, May 1983, pp. 48-53.

www.manaraa.com

2 30

[Dic81] Dickover, M.E., C.L. McGowan and D.T. Ross, "Software Design Using
SADT," in "Tutorial on Software Design Strategies," Second Edition,
Glenn D. Bergland and Ronald D. Gordon, eds., IEEE Computer Society
Press, Los Angeles, California, 1981, pp. 397-409.

[Dig88] Digital Consulting, Inc. Brochure for CASES, a Computer-Aided Software
Engineering Symposium, Boston, M assachusetts, April 25-27, 1988.

[Dij79] Dijkstra, E, "Programming Considered as a Hum an Activity," in Classics in
Software Engineering, ed. Nash Yourdon, Yourdon Press, New York,
1979, pp. 3-12.

[Dit88] Dittrich, Klaus R. and Raymond A. Lorie, "Version Support for
Engineering Database Systems," in IEEE Transactions on Software
Engineering, Vol. 14, No. 4, April 1988.

[Duf89] Duffrin, David. Private conversation, International Business Machines
Corporation, Myers Corners, New York, 10 February 1989.

[Fer88] Ferucci, David, "OOCADE VLSI Representation Issues Figures (Draft),"
16 March 1988.

[Fis87] Fischer, Gerhard, "Cognitive View of Reuse and Redesign," in IEEE
Software, July, 1987, pp. 60-72.

[Fra87] Frakes, W.B. and B.A. Nejmeh, "An Information System for Software
Reuse," in Proceedings o f the 10th Minnowbrook Workshop on Software
Reuse, 1987, pp. 142-151.

[Fri82] Friedell, Mark, Jane Barnett and David Kramlich. "Context Sensitive,
Graphic Presentation of Information." Computer Graphics, Vol. 16, No.
3, July 1982, pp. 181-188.

[Gar87] Gargaro, Anthony, and T.L. Pappas, "Reusability Issues and Ada," in
IEEE Software, July, 1987, pp. 43-51.

[GE87] GE. "Interactive Ada Workstation," Research Brochure, General Electric
Company Corporate Research and Development, Niskayuna, New York,
1987.

www.manaraa.com

231

[Gli86a] Glinert, Ephraim P. "Interactive, Graphical Programming Environments:
Six Open Problems and a Possible Solution," Department of Computer
Science Technical Report Number 86-13, Rensselaer Polytechnic Institute,
Troy, New York, July, 1986.

[Gli86b] Glinert, Ephraim P. "Towards ’Second Generation’ Interactive, Graphical
Programming Environments," Department of Computer Science Technical
Report Number 86-12, Rensselaer Polytechnic Institute, Troy, New York,
July, 1986.

[Gli86c] Glinert, Ephraim P. and Craig D. Smith. "PC-TILES: A Visual
Programming Environment for Personal Computers Based on the BLOX
Methodology," Department o f Computer Science Technical Report Number
86-21, Rensselaer Polytechnic Institute, Troy, New York, October, 1986.

[Gli87] Glinert, Ephraim P., M artin Hardwick, M.S. Krishnamoorthy, and David
Spooner. "Visual Programming Environments and CAD Databases: A
Synthesis of Emerging Concepts for Software Engineering," Department
of Computer Science, Rensselaer Polytechnic Institute, Troy, New York,
1987, pp. 1-10.

[G1L86] Glintz, Martin and Jochen Ludewig, "SEED- A DBMS for Software
Engineering Applications Based on the Entity-Relationship Aprroach," in
Proceedings of the International Conference on Data Engineering, Los
Angeles, California, February 1986, pp. 654-660.

[Gog84] Goguen, Joseph A., "Param eterized Programming," in IEEE Transactions
on Software Engineering, Vol. SE-10, No. 5, September 1984, pp.
528-543.

[Gut82] Guttman, Antonin and Michael Stonebraker, "Using a Relational Database
Management System for Computer Aided Design Data," in Database
Engineering, Vol. 5, No. 2, June 1982, pp. 21-28.

[Har85a] Hardwick, Martin. "Design and Implementation of a Data Manager for
Design Objects," Department o f Computer Science Technical Report
Number 85-34, Rensselaer Polytechnic Institute, Troy, New York, 1985.

[Har85b] Hardwick, Martin and David L Spooner. "Comparison of Data Models for
CAD Objects," Department o f Computer Science Technical Report Number
85-36, Rensselaer Polytechnic Institute, Troy, New York, 1985.

www.manaraa.com

2 32

[Har86] Hardwick, M artin. "User Manual for ROSE: A CAD/CAM Database
System," Department o f Computer Science Technical Report Number
86-24, Rensselaer Polytechnic Institute, Troy, New York, October, 1986.

[Har87a] Hardwick, M artin. "Why ROSE is Fast: Five Optimizations in the Design
of an Experimental Database System for CAD/CAM Applications," in
Proceedings o f ACM SIGMOD, San Francisco, California, May, 1987, pp.
292-298.

[Har87b] Hardwick, M artin and David Spooner. "The ROSE Object-Oriented
Database System: The Advantages of an Open Architecture," Department
of Computer Science Technical Report Number 87-30, Rensselaer
Polytechnic Institute, Troy, New York, December, 1987.

[Har87c] Hardwick, M artin, George Sam aras and David Spooner. "Evaluating
Recursive Queries in CAD Using an Extended Projection Function," in
Proceedings o f the 3rd International Conference on Data Engineering, Los
Angeles, California, February, 1987, pp. 138-148.

[Has82] Haskin, Roger and Raymond Lorie, "Using a Relational D atabase System
for Circuit Design," in Database Engineering, Vol. 5, No. 2, June 1982,
pp. 10-14.

[Haw84] Hawryszkiewycz, I.T. Database Analysis and Design. Science Research
Associates, Inc., Chicago, 1984.

[Hay81] Haynie, M., "The Relational/Network Hybrid D ata Model for Design
Automation Databases," in Proceedings o f the 18th Design Automation
Conference, 1981, pp. 646-652.

[Hel87] Helier, Sandra, Umeshwar Dayal, Jack Orenstein, and Susan
Radke-Sproull, "An Object-Oriented Approach to Data Management:
Why Design Databases Need it," in Proceedings of the 24th Design
Automation Conference, Los Vegas, Nevada, 1987, pp. 335-340.

[Hig83] Higgins, David. Designing Structured Programs. Prentice Hall, Inc.,
Englewood Cliffs, New Jersey, 1983.

[Hud87] Hudson, Scott E. and Roger King, "Object-Oriented Database Support for
Software Environments," in Proceedings of ACM SIGMOD, San
Francisco, California, May, 1987, pp. 491-503.

www.manaraa.com

233

[Hud88] Hudson, Scott E. and Roger King, "The Cactis Project: Database Support
for Software Environments," in IEEE Transactions on Software
Engineering, Volume 14, Number 6, June, 1988, pp. 709-719.

[IDE87] IDE. "Software Through Pictures," Sales Brochure, Interactive
Development Environments, San Francisco, CA, 1987.

[Iso87] Isoda, Sadahiro, "SoftDA: A Computer Aided Software Engineering
System," in Proceedings o f the 1987 Fall Joint Computer Conference,
October 25-29, 1987, Dallas, Texas, pp.147-151.

[Jac75] Jackson, Michael. Principles of Program Design. Academic Press, 1975.

[Kat85] Katz, R. H. Information Management for Engineering Design.
Springer-Verlag, Berlin, FRG, 1985.

[Kat86] Katz, R. H., M. Anwarrudin, and E. Chang, "A Version Server for
Computer-Aided Design Data," in Proceedings o f the 23rd Design
Automation Conference, Los Vegas, Nevada, 1986, pp. 27-33.

[Kat87] Katz, Randy H., Rajiv Bhteja, Ellis E-Li Chang, David Gedye, and Vony
Trijanto. "Design Version Management," in IEEE Design and Test, 1987,
pp. 12-22.

[Kai87] Kaiser, Gail E., and David Garlan, "Melding Software from Reusable
Building Blocks," in IEEE Software, July, 1987, pp. 17-32.

[Kim87] Kim, Won, Hong-Tai Chou and Jay Banerjee, "Operations and
Implementation of Complex Objects," in Proceedings of the 3rd
International Conference on Data Engineering, Los Angeles, California,
1987, pp. 626-633.

[Koz87] Kozol, Micheal. "An Automated Software Engineering Project Notebook for
the IBM-PC," Master’s Project, Rensselaer Polytechnic Institute, Troy,
New York, April, 1987.

[Kra83] Kramlich, David, and Gretchen P. Brown, Richard T. Carling, Christopher
F. Herot. "Program Visualization: Graphics Support for Software
Development," in Proceedings ACM IEEE 20th Design Automation
Conference, Miami Beach, Florida, 1983, pp. 143-149.

www.manaraa.com

234

[Kur75] Kurzban, Stanley A, Thomas S. Heines and Anthony P. Sayers.
Operating Systems Principles. Petrocelli/Charter, New York, 1975.

[Len87] Lenz, Manfred, Hans Albrecht Schmid, and Peter F. Wolf, "Software
Reuse Through Building Blocks," in IEEE Software, July, 1987, pp.
34-42.

[Lit84] Litvintchouk, Steven D. and Allen S. Matsumoto, "Design of Ada Systems
Yielding Reusable Components: An Approach Using Structured Algebraic
Specification," in IEEE Transactions on Software Engineering, Vol. SE-10,
No. 5, September 1984, pp. 544-551.

[Lon72] London, Keith R. Decision Tables. Auerbach, Princeton Jersey, 1972.

[Lor83] Lorie, Raymond and Wilfred Plouffe, "Complex Objects and Their Use in
Design Transactions," in Proceedings of Annual Meeting of Engineering
Design Applications, San Jose, California, May 1983, pp. 115-121.

[Mar85a] Martin, Jam es and Carma McClure. Action Diagrams: Clearly
Structured Program Design. Prentice Hall, Inc, Englewood Cliffs, New
Jersey, 1985.

[Mar85b] Martin, Jam es and Carma McClure. Diagramming Techniques for
Analysts and Programmers. Prentice Hall, Inc, Englewood Cliffs, New
Jersey, 1985.

[Mar85c] Martin, James and Carma McClure. Structured Techniques for
Computing. Prentice Hall, Inc, Englewood Cliffs, New Jersey, 1985.

[Mar87] Martin, Jam es. Recommended Diagramming Standards for Analyst and
Programmers. Prentice Hall, Inc, Englewood Cliffs, New Jersey, 1987.

[Mat84], Matsumoto, Yoshihiro, "Some Experiences in Promoting Reusable
Software Presentation in Higher Abstraction Levels," in IEEE
Transactions on Software Engineering, Vol. SE-10, No. 5, September
1984, pp. 502-513.

[Mat87] M atsumura, Kazuo, Hiroyuki Mizutani and Masahiko Arai. " An
Application of Structural Modeling to Software Requirements Analysis
and Design." IEEE Transactions on Software Engineering, Vol. SE-13,
No. 4, April 1987, pp. 461-471.

www.manaraa.com

235

[MHS86] M atthews, T.J, R.M. Hollett and C.M. Smith. "Advanced Graphical
Workstations for Software Development," in British Telecommunications
Technology Journal, Vol. 4, Number 3, July 1986, pp. 92-101.

[McL83] McLeod, Dennis, K. N arayanasw am y, and K. V. Bapa Rao, "An
Approach to Information M anagement for CAD/VLSI Applications," in
Proceedings of the Annual Meeting to Engineering Design Applications,
San Jose, California, May, 1983, pp. 39-50.

[Mit87a] Mittermeir, Roland T. and Wilhelm Rossack, "Software Bases and
Software Archives: Alternatives to Support Software Reuse," in
Proceedings of the 1987 Fall Joint Computer Conference, October 25-29,
1987, Dallas, Texas, pp. 21-28.

[Mit87b] M ittermeir, Roland T. and Marcus Oppitz, "Software Bases for the
Flexible Composition of Application Systems," in IEEE Transactions on
Software Engineering, Vol. SE-13, No. 4, April 1987, pp. 440-460.

[Mur75] Murrill, Paul W. and Cecil L. Smith. An Introduction to Fortran IV
Programming: _A General Approach, Second edition. Intext Educational
Publishers, New York, 1975.

[Mye83] Myers, Brad A. "INCENSE: A System for Displaying D ata Structures."
Computer Graphics, Vol. 17, No. 3, July 1983, pp. 115-125.

[Mye78] Myers, Glenford J. Composite/Stuctured Design. Van Nostrand Reinhold
Company, New York, 1978.

[Nes86] Nestor, John R. "Re-creation and Evolution in a Programming
Environment," in Proceedings o f the International Workshop on
Object-Oriented Systems, Pacific Grove, California, September 1986, p.
230.

[Nei84] Neighbors, Jam es M., "The Draco Approach to Constructing Software from
Reusable Components," in IEEE Transactions on Software Engineering,
Vol. SE-10, No. 5, September 1984, pp. 564-574.

[01u83] Olumi, Mohammad, et al, "Software Project Databases," in Proceedings of
Annual Meeting of Engineering Design Applications, San Jose, California,
May 1983, pp. 124-134.

www.manaraa.com

2 3 6

[Onu87a] Onuegbe, Emmanuael 0 ., "Database Management System Requirements
for Software Engineering Environments," in Proceedings of the 3rd
International Conference on Data Engineering, Los Angeles, California,
1987, pp. 501-509.

[Onu87b] Onuegbe, Emmanuael 0 ., "Software Classification as an Aid to Reuse:
Initial Use as Part of a Rapid Prototyping System," in Proceedings of the
20th Annual Hawaii International Conference on System Sciences, 1987,
pp. 521-529.

[Pet81] Peters, Lawrence J . Software Design: Methods and Techniques. Yourdon
Press, New York, 1981.

[Phi86] Phillips, Richard and Ron Radice. "Software Engineering I and II," Class
Notes, Rensselaer Polytechnic Institute, Troy, New York, September
1985- May 1986.

[Phi88] Phillips, Richard and Ron Radice. Software Engineering: An Industrial
Approach., Vol. 1. Prentice-Hall, Inc. Englewood Cliffs, New Jersey,
1988.

[Pid85] Pidgeon, Christopher W. and Peter A. Freeman. "Development Concerns
for a Software Design Quality Expert System," in Proceedings, 22nd
ACMIIEEE Design Automation Conference, Las Vegas, Nevada, 1985,
pp.562-568.

[Plo84] Plouffe, Wil, Won Kim, Raymond Lorie, and Dan McNabb, "A Database
System for Engineering Design," in Database Engineering, Vol. 7, No. 2,
June 1984, pp. 48-55.

[Pot88] Potter, Walter D. and Robert P. Trueblood, "Traditional, Semantic,- and
Hyper-Semantic Approaches to D ata Modeling," in Computer, Volume
21, Number 6, June, 1988, pp. 53-63.

[Pou87] Poulin, Jeffrey S., "Summary of Research," Research Summary,
Department of Computer Science, Rensselaer Polytechnic Institute,
August, 1987.

[Pou88a] Poulin, Jeffrey S., "Object-Oriented Database Support for Computer
Aided Software Engineering," Research Summary, Department of
Computer Science, Rensselaer Polytechnic Institute, February, 1988.

www.manaraa.com

237

[Pou88b] Poulin, Jeffrey S., "Object-Oriented D atabase Support for Computer
Aided Software Engineering," Research Proposal, Departm ent of
Computer Science, Rensselaer Polytechnic Institute, 3 August, 1988.

[Pou89] Poulin, Jeffrey S., and M artin Hardwick, "Adapting Object-Oriented
Database Concepts for Computer Aided Software Engineering (CASE),"
to appear in Proceedings o f the International Symposium on Database
Systems for Advanced Applications, Seoul, Korea, April, 1989.

[Pow83] Powell, Michael L. and Mark A. Linton, "Database Support for
Programming Environments," in Proceedings of Annual Meeting of
Engineering Design Applications, San Jose, California, May 1983, pp.
63-70.

[Pre82] Pressm an, Roger S. Software Engineering: Â Practitioner’s Approach.
McGraw-Hill Book Company, New York, 1982.

[Pri87] Prieto-Diaz, Ruben, and Peter Freeman, "Classifying Software for
Reusability," in IEEE Software, Los Alomitos, California, January 1987,
pp. 6-16.

[Pri88] Prieto-Diaz, Ruben, and Gerald A. Jones, "Breathing New Life into Old
Software," in GTE Journal of Sciences and Technology, Vol. 1, 1988, pp.
152-160.

[Pyl81] Pyle, I.C. The Ada Programming Language. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1981.

[Rae85] Raeder, Georg. "A Survey of Current Graphical Programming
Techniques," in IEEE Computer, Vol. 18, Number 8, August 1985, pp.
11-24.

[Raj87] Rajlich, Vaclav. "Refinement Methodology for Ada," in IEEE Transactions
on Software Engineering, Vol. SE-13, No. 4, April 1987, pp. 472-478.

[Ram86] Ramamoorthy C.V., Vijay Garg and Atul Prakash. "Programming in the
Large," in IEEE Transactions on Software Engineering, Vol. SE-12, No.
7, July 1986, pp. 769-783.

[ReA87] Reilly, Angela. "Roots of Reuse," in IEEE Software, Los Alomitos,
California, January 1987, pp. 4-5.

www.manaraa.com

2 3 8

[ReS85] Reiss, Steven P. "PECAN: Program Development Systems tha t Support
Multiple Views." in IEEE Transactions on Software Engineering, Vol.
SE-11, No. 3, March 1985, pp. 276-285.

[ReS86] Reiss, Steven P. "An Object-Oriented Framework for Graphical
Programming (Summary Paper)." SIGPLAN Notices, Vol. 21, No. 10,
October 1986, pp. 49-57.

[ReS87] Reiss, Steven P. "Working in the Garden Environment for Conceptual
Programming," in IEEE Software, November 1987, pp. 16-27.

[Rom87] Roman, Gruia-Catalin, "Data Engineering in Software Development
Environments," in Proceedings of the 3rd International Conference on Data
Engineering, Los Angeles, California, 1987, pp. 85-86.

[Rou83] Roussopoulos, Nick and Stephen Kelly, "A Relational Database to Support
Graphical Design and Documentation," in Proceedings of Annual Meeting
of Engineering Design Applications, San Jose, California, May 1983, pp.
135-149.

[Rov88] Rovira, M argarita, Private Conversations, July-October 1988.

[Rov89] Rovira, M argarita, "Adapting Object-Oriented CAD Database Concepts for
Computer Aided Software Engineering," Fall 1988 Research Summary,
March, 1989.

[Rug86] Rugg, Tom, and Phil Feldman, Turbo Pascal Program Library. Que
Corporation, Indianapolis, Indiana, 1986.

[Sal75] Salton, Gerard. Dynamic Information and Library Processing.
Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1975.

[Sam87] Sam aras, George and Martin Hardwick. "User Manual for a VLSI CAD
System Developed on ROSE," Department o f Computer Science,
Rensselaer Polytechnic Institute, Troy, New York, 1987, pp. 1-24.

[Sha87] Shatz, Sol M. and Jia-Ping Wang, "Introduction to DistributedSoftware
Engineering," in Computer, Vol. 20, No. 10, October, 1987, pp. 23-31.

www.manaraa.com

2 3 9

[Shi81] Shipman, D., "The Functional Data Model and the Data Language
Daplex," in ACM Transactions on Database Systems, Volume 6, Number
1, March, 1981, pp. 140-173.

[Smi77] Smith, J . and D. Smith, "Data Abstractions: Aggregation and
Generalization," ACM Transactions on Database Systems, Volume 3,
Number 3, 1977, pp. 105-133.

[Spo86] Spooner, David. "Advanced Database Management Topics," Class Notes,
Rensselaer Polytechnic Institute, Troy, New York, September 1986-
December 1986.

[Spo87] Spooner, David, and Martin Hardwick. "Using CAD Database Technology
for Software Engineering: Research Plan," Research Plan for IBM project,
Rensselaer Polytechnic Institute, Troy, New York, June, 1987.

[Sid80] Sidle, Thomas W., "Weaknesses of Commercial Data Base Management
Systems in Engineering Applications," in Proceedings of the 17th Design
Automation Conference, New York, 1980, pp. 57-61.

[Sim86] Simon, Herbert A. "Whether Software Engineering Needs to be Artificially
Intelligent," in IEEE Transactions on Software Engineering, Vol. SE-12,
No. 7, July, 1986, pp. 726-732.

[Ste79] Stevens, W, G. Meyers and L. Constantine, "Structured Design," in
Classics in Software Engineering, ed. Nash Yourdon, Yourdon Press,
New York, 1979, pp. 207-231.

[Sto84] Stonebraker, M., e t al. "QUEL as a Data Type," in Proceedings o f the
International SIGMOD Conference, Boston, June, 1984, pp. 208-214.

[Sto87] Stovsky, Michael P. and Bruce W. Weide. "STILE: A Graphical Design and
Development Environment," in Proceedings of the 22nd ACM/IEEE
Design Automation Conference, Las Vegas, Nevada, 1987, pp. 247-250.

[SUN86] SCCS, "Source Code Control System," in Programming Utilities for the
SUN Workstation," SUN Microsystems, Inc., Mountain View, California,
February, 1986, pp. 71-90.

www.manaraa.com

2 4 0

[Swa87] Swaminathau, Ramesh , Jam es Loy, M.S. Krishnamoorthy, and Patrick
Harubin. "On Animation Programs," Department o f Computer Science
Technical Report Number 87-9, Rensselaer Polytechnic Institute, Troy,
New York, March, 1987.

[Tay85] Taylor, Richard N. and Thomas A. Standish. "Steps to and Advanced Ada
Programming Environment." in IEEE Transactions on Software
Engineering, Vol. SE-11, No. 3, March 1985, pp. 302310.

[Tsi82] Tsichritzis, Dionysios C. and Frederick H. Lochovsky. D ata Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1982.

[Tur84] Turner, Ray. Software Engineering Methodology. Reston Publishing
Company, Inc, Reston, Virginia, 1984.

[U1182] Ullman, Jeffrey D. Principles of Database Systems, 2nd. Edition. Computer
Science Press, Rockville, M aryland, 1982.

[Van84] Van Dam, Andreis. "The Electronic Classroom: Workstations for
Teaching." in Int. Journal o f Man-Machine Studies (1984) 21,
pp.353-363.

[Was86] W asserman, Anthony I., Peter A. Pircher, Davud T. Shewmake, and
M artin L. Kirsten. "Developing Interactive Information Systems with the
User Software Engineering Methodology." in IEEE Transactions on
Software Engineering, Vol. SE-12, No. 2, February 1986, pp. 326-345.

[Was87] W asserman, Anthony L. and Peter A. Pircher. "A Graphical, Extendible
Integrated Environment for Software Development." in SIGPLAN
Notices, Vol. 22, No. 1, January 1987, pp. 131-142.

[Web88] Webster, Dallas E., "Mapping the Design Information Representation
Terrain," in IEEE Computer, Vol. 21, Number 12, December 1988, pp.
8-23.

[Weg84] Wegner, Peter, "Capital Intensive Software Technology," in Special Issue
of IEEE Software, Vol. 1, Number 3, July 1984, pp. 7-45.

[Wie87] Wiederhold, Gio. File Organization for Database Design. McGraw-Hill
Book Company, New York, 1987.

www.manaraa.com

241

[Wir85] Wirth, Nicklaus. Programming in Modula-2. Springer-Verlag, New York,
1985.

[Yau86] Yau, Stephen S. and Jeffrey J.-P Tsai. "A Survey of Software Design
Techniques." in IEEE Transactions on Software Engineering, Vol. SE-12,
No. 6, June 1986, pp. 713-721.

[Yau87] Yau, Stephen S. "Relationship Between Data Engineering and Software
Engineering," in Proceedings, 3rd IEEE International Conference on Data
Engineering, Los Angeles, California, 1987, pp. 84.

[Yod83] Yoder, M. and Marilyn L. Schrag, "Nassi-Schneiderman Charts: An
Alternative to Flowcharts for Design," in Tutorial on Software Design
Techniques, 4th Edition, ed. Peter Freem an and Anthony I. Wasserman,
IEEE Computer Society Press, Silver Springs, Maryland, 1983, pp.
506-514.

[You 75] Yourdon, Edward. Techniques of Program Structure and Design.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.

[You79] Yourdon, Edward and Larry L. Constantine. Structured Design:
Fundamentals of a Discipline of Computer Program and Systems Design.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1979.

[Zel87] Zelkowitz, Marvin V. "An Editor for Program Design," in U. S. Government
Publication, Institute for Computer Science and Technology, National
Bureau of Standards, Gaithersburg, Md, 1987, pp. 242-246.

www.manaraa.com

Index
A NEW DATA MODEL FOR CASE, 35
A Sample Design Session, 151
About the System, 149
Accessing Design Data, 122
Adding to the Interface Definition, 111
Advantages, 163, 166, 169, 170, 171
Allowable Values for Keywords, 115
Alternatives, 215
An Approach to Design Data Capture, 101
APPENDIX I: Prototype IDM Structure, 203
APPENDIX II: Operations on the IDM, 207
APPENDIX III: User Interface Issues, 221
APPENDIX IV: The Correspondence Between DFDs and DSDs, 224
Application-Oriented Organization, 141
Applying CAD Database Concepts to CASE, 4
Approaches for use with the IDM, 136
Approaches to CASE Data Models, 36
Approaches to Software Classification with the IDM, 117
Artificial Intelligence Techniques, 132
Associative Networks, 128
Attribute Search, 136
Calls, 211
Capture of Design Data, 166
CAPTURING DESIGN INFORMATION IN A CASE SYSTEM, 74
Changes to the VLSI Model, 40
Classification Matrix, 131
CLASSIFICATION OF SOFTWARE COMPONENTS, 109, 169
Cluster Theory, 127
Complex Objects, 19
Conclusion, 196
Constraints, 207, 211, 215, 218
Contributions, 7
Contributions of the Implementation, 195
Contributions to Software Engineering and CAD/CAM, 184
CONTRIBUTIONS TO THE FIELD, 181
Data Capture with the IDM, 104
Data Flow Design, 76
Data Model Requirements for Support of CASE and Software Reuse, 26
Data Modeling in CAD and CASE, 5
Data Structure Design, 79
Database Technology in CAD/CAM Applications, 17
Decision Tables, 92
Dependencies of the Retrieval Techniques, 133
Design D ata Management in CASE Systems, 175
Desired Operations, 122
Details of the IDM, 47
Disadvantages, 164, 167, 169, 171, 172
Discussion, 132
DISCUSSION AND CONCLUSIONS, 200
Economy of Scale, 172
Engineering Data Models, 19

2 42

www.manaraa.com

24 3

EVALUATION OF THE IDM, 162
Existing Systems for CASE, 176
Faceted Schema, 130'
Finite State Machines, 91
For Archive Storage of Reusable Components, 33
For CAD/CAM, 179
For Capture of Design Data, 32
For Classification of Design Data, 32
For Retrieval of Design D ata for Reuse, 33
For Semantic Modeling of CAD Data, 28
For Semantic Modeling of CASE Data, 31
For Software Engineering, 180
Formal Definitions, 26
Formal Semantics, 112
Functional Decomposition, 75
FUTURE WORK, 197
High Level Design Methodologies, 75
High Level Design Methods, 95
HISTORICAL REVIEW OF SEMANTIC DATA MODELING IN CAD, 11
Hybrid Models, 22
IMPLEMENTATION OF THE IDM, 149
Indexing Strategy, 123
Indexing Techniques, 124
Interactive Ada Workstation, 177
Interface Operations, 207
Introduction, 11, 12, 35, 39, 47, 58, 74, 89, 94, 101, 109, 117, 122, 136, 140, 149,

151, 176, 181, 197, 207
INTRODUCTION AND HISTORICAL REVIEW, 1
IPO Charts, 87
Levels of Abstraction, 173
LITERATURE CITED, 226
Low Level Design Methodologies, 89
Low Level Mappings, 98
Mapping the Design Methodologies to Program Structure, 94
Matching Needs with Available Components, 133
Molecular Objects, 21
Multilist Index, 137
Multilists, 125
Object in a Field, 23
Object-Oriented Design, 85
Operations, 209, 212, 216, 219
Operations and Practice, 58
Operations on the IDM, 59
Operations on the Software Archive, 145
Organization Based on Retrieval Method, 142
Organization of Implementation Archive, 146
Organization of Software Libraries, 141
ORGANIZATION OF THE SOFTWARE ARCHIVE, 140, 171
Outline of the Thesis, 8
Overview of ROSE, 24
Overview of the Design Process, 151
Pecan, 177

www.manaraa.com

Practice, 63
Public Archives and Private Workspaces, 143
RELATED WORK, 175
Relationship of the IDM to Object-Oriented Program Design, 72
Research Topics, 197
Retrieval of Software Components, 170
RETRIEVAL OF SOFTWARE DESIGN DATA, 122
Scalability, 34
Semantic Data Models for Design Data, 179
Shortcomings of Traditional Databases for Engineering Design Data, 17
Software Catalogues, 124
Software Classification Options, 110
Software Engineering and CASE, 2
Software Module as a Static Object, 36
Software Reusability, 1
Software Through Pictures, 176
Standard Flowcharts, 89
Static Classification Schedule, 118
Storage of Design Data, 163
Structured Flowcharts, 90
The Alternative, 51
The Argument for Database Support of CAD and CASE, 11
The Call, 56
The Design Session, 152
The Extended Static Module Object, 38
The Functional Model, 23
The Hierarchical Model, 15
The IDM as a Partial Solution to Reusability in CASE, 162
The Interactive Development Model for CASE, 39
The Interface, 47
The Interface Definition of a Module, 110
The Network Model, 17
The Program Dynamic Structure Diagram, 103
The Program Static Structure Diagram, 103
The Relational Model, 13
To Archive Storage of Reusable Components, 194
To Capture of Design Data, 191
To Classification of Design Data, 192
To Retrieval of Design Data for Reuse, 193
To Scalability, 195
To Semantic Modeling of CAD Data, 184
To Semantic Modeling of CASE Data, 190
Traditional Data Models, 12
Use of Keywords for Software Classification, 113
Variable Keyword Lists, 119
Versions of Alternatives, 218

